Generalizing Diffuse Interface Methods on Graphs: Nonsmooth Potentials and Hypergraphs

Diffuse interface methods have recently been introduced for the task of semisupervised learning. The underlying model is well known in materials science but was extended to graphs using a Ginzburg--Landau functional and the graph Laplacian. We here generalize the previously proposed model by a nonsmooth potential function. Additionally, we show that the diffuse interface method can be used for the segmentation of data coming from hypergraphs. For this we show that the graph Laplacian in almost all cases is derived from hypergraph information. Additionally, we show that the formerly introduced hypergraph Laplacian coming from a relaxed optimization problem is well suited to be used within the diffuse interface method. We present computational experiments for graph and hypergraph Laplacians.

[1]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[2]  Jitendra Malik,et al.  Efficient spatiotemporal grouping using the Nystrom method , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[3]  Paulo Cortez,et al.  Using data mining to predict secondary school student performance , 2008 .

[4]  Arjuna Flenner,et al.  Diffuse Interface Models on Graphs for Classification of High Dimensional Data , 2012, SIAM Rev..

[5]  Moulay Hicham Tber,et al.  An adaptive finite-element Moreau–Yosida-based solver for a non-smooth Cahn–Hilliard problem , 2011, Optim. Methods Softw..

[6]  A. Asuncion,et al.  UCI Machine Learning Repository, University of California, Irvine, School of Information and Computer Sciences , 2007 .

[7]  Martin Stoll,et al.  A Fractional Inpainting Model Based on the Vector-Valued Cahn-Hilliard Equation , 2015, SIAM J. Imaging Sci..

[8]  Pavel B. Bochev,et al.  On the Finite Element Solution of the Pure Neumann Problem , 2005, SIAM Rev..

[9]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[10]  Harald Garcke,et al.  Allen-Cahn and Cahn-Hilliard Variational Inequalities Solved with Optimization Techniques , 2012, Constrained Optimization and Optimal Control for Partial Differential Equations.

[11]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[12]  Maya Neytcheva,et al.  Efficient numerical solution of discrete multi-component Cahn-Hilliard systems , 2014, Comput. Math. Appl..

[13]  John W. Barrett,et al.  An Error Bound for the Finite Element Approximation of a Model for Phase Separation of a Multi-Compo , 1996 .

[14]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .

[15]  Harald Garcke,et al.  Solving the Cahn-Hilliard variational inequality with a semi-smooth Newton method , 2011 .

[16]  Tony F. Chan,et al.  Nontexture Inpainting by Curvature-Driven Diffusions , 2001, J. Vis. Commun. Image Represent..

[17]  Q. Du,et al.  Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches , 2006, Journal of Mathematical Biology.

[18]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[19]  Andrea L. Bertozzi,et al.  Convergence Analysis of the Graph Allen-Cahn Scheme , 2016 .

[20]  Jean Gallier,et al.  Spectral Theory of Unsigned and Signed Graphs. Applications to Graph Clustering: a Survey , 2016, ArXiv.

[21]  R. Forsyth PC/BEAGLE User''s Guide , 1990 .

[22]  A. Bertozzi,et al.  Unconditionally stable schemes for higher order inpainting , 2011 .

[23]  Yunmei Chen,et al.  Projection Onto A Simplex , 2011, 1101.6081.

[24]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[25]  Jitendra Malik,et al.  Spectral grouping using the Nystrom method , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  D. J. Eyre Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation , 1998 .

[27]  Inderjit S. Dhillon,et al.  Co-clustering documents and words using bipartite spectral graph partitioning , 2001, KDD '01.

[28]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[29]  Mason A. Porter,et al.  A Method Based on Total Variation for Network Modularity Optimization Using the MBO Scheme , 2013, SIAM J. Appl. Math..

[30]  Arjuna Flenner,et al.  Diffuse interface methods for multiclass segmentation of high-dimensional data , 2014, Appl. Math. Lett..

[31]  B. Schölkopf,et al.  A Regularization Framework for Learning from Graph Data , 2004, ICML 2004.

[32]  S. Esedoglu,et al.  Threshold dynamics for the piecewise constant Mumford-Shah functional , 2006 .

[33]  Arthur D. Szlam,et al.  A Total Variation-based Graph Clustering Algorithm for Cheeger Ratio Cuts , 2009 .

[34]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[35]  Arjuna Flenner,et al.  Multiclass Data Segmentation Using Diffuse Interface Methods on Graphs , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Matthias Hein,et al.  An Inverse Power Method for Nonlinear Eigenproblems with Applications in 1-Spectral Clustering and Sparse PCA , 2010, NIPS.

[37]  Andrea L. Bertozzi,et al.  An MBO Scheme on Graphs for Classification and Image Processing , 2013, SIAM J. Imaging Sci..

[38]  Alastair Spence,et al.  A tuned preconditioner for inexact inverse iteration applied to Hermitian eigenvalue problems , 2007 .

[39]  Matthias Hein,et al.  The Total Variation on Hypergraphs - Learning on Hypergraphs Revisited , 2013, NIPS.

[40]  John W. Barrett,et al.  Finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy , 1997 .

[41]  Pietro Perona,et al.  Self-Tuning Spectral Clustering , 2004, NIPS.

[42]  Martin Stoll,et al.  Fast Solvers for Cahn-Hilliard Inpainting , 2014, SIAM J. Imaging Sci..

[43]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[44]  D. Fontaine An analysis of clustering and ordering in multicomponent solid solutions—II fluctuations and kinetics , 1973 .

[45]  Jan J. Gerbrands,et al.  Three-dimensional image segmentation using a split, merge and group approach , 1991, Pattern Recognit. Lett..

[46]  A. Bertozzi,et al.  Mean Curvature, Threshold Dynamics, and Phase Field Theory on Finite Graphs , 2013, 1307.0045.

[47]  Bernhard Schölkopf,et al.  Learning with Hypergraphs: Clustering, Classification, and Embedding , 2006, NIPS.

[48]  Christopher R. Anderson,et al.  A Rayleigh-Chebyshev procedure for finding the smallest eigenvalues and associated eigenvectors of large sparse Hermitian matrices , 2010, J. Comput. Phys..

[49]  C. M. Elliott,et al.  On the Cahn-Hilliard equation with degenerate mobility , 1996 .

[50]  Pascal Frossard,et al.  The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains , 2012, IEEE Signal Processing Magazine.

[51]  Andrea L. Bertozzi,et al.  Inpainting of Binary Images Using the Cahn–Hilliard Equation , 2007, IEEE Transactions on Image Processing.

[52]  John W. Cahn,et al.  Linking anisotropic sharp and diffuse surface motion laws via gradient flows , 1994 .

[53]  J. C. Schlimmer,et al.  Concept acquisition through representational adjustment , 1987 .

[54]  Andrea L. Bertozzi,et al.  A Wavelet-Laplace Variational Technique for Image Deconvolution and Inpainting , 2008, IEEE Transactions on Image Processing.

[55]  Lin He,et al.  Cahn--Hilliard Inpainting and a Generalization for Grayvalue Images , 2009, SIAM J. Imaging Sci..

[56]  Jung-Il Choi,et al.  Fast local image inpainting based on the Allen-Cahn model , 2015, Digit. Signal Process..