ON OUTPUT FEEDBACK STABILITY AND PASSIVITY IN DISCRETE LINEAR SYSTEMS

Abstract Recent publications have shown that under some conditions continuous linear time-invariant systems become strictly positive real with constant feedback. This paper expands the applicability of this result to discrete linear systems. The paper shows the sufficient conditions that allow a discrete system to become stable and strictly passive via static (constant or nonstationary) output feedback.

[1]  Izhak Bar-Kana,et al.  Absolute Stability and Robust Discrete Adaptive Control of Multivariable Systems , 1989 .

[2]  Petros A. Ioannou,et al.  Design of strictly positive real systems using constant output feedback , 1999, IEEE Trans. Autom. Control..

[3]  Itzhak Barkana,et al.  Simple Adaptive Control for Non-Minimum Phase Autopilot Design , 2004 .

[4]  Brian D. O. Anderson,et al.  Discrete positive-real fu nctions and their applications to system stability , 1969 .

[5]  A. L. Fradkov Quadratic Lyapunov functions in the adaptive stability problem of a linear dynamic target , 1976 .

[6]  Izhak Bar-Kana,et al.  Discrete Direct Multivariable Adaptive Control , 1983 .

[7]  Itzhak Barkana Comments on "Design of strictly positive real systems using constant output feedback" , 2004, IEEE Trans. Autom. Control..

[8]  M. Corless,et al.  Output feedback stabilization of uncertain dynamical systems , 1984 .

[9]  H. Kaufman,et al.  Global stability and performance of a simplified adaptive algorithm , 1985 .

[10]  I. Bar-Kana Parallel feedforward and simplified adaptive control , 1987 .

[11]  Howard Kaufman,et al.  DISCRETE DIRECT MULTIVARIABLE ADAPTIVE CONTROL , 1984 .

[12]  H. Kaufman,et al.  Implicit Adaptive Control for a Class of MIMO Systems , 1982, IEEE Transactions on Aerospace and Electronic Systems.

[13]  David H. Owens,et al.  Positive-Real Structure and High-Gain Adaptive Stabilization , 1987 .

[14]  G. Gu Stabilizability conditions of multivariable uncertain systems via output feedback control , 1990 .