Stock market forecasting with financial micro-blog based on sentiment and time series analysis

During the past few decades, time series analysis has become one popular method for solving stock forecasting problem. However, depending only on stock index series makes the performance of the forecast not good enough, because many external factors which may be involved are not taken into consideration. As a way to deal with it, sentiment analysis on online textual data of stock market can generate a lot of valuable information as a complement which can be named as external indicators. In this paper, a new method which combines the time series of external indicators and the time series of stock index is provided. A special text processing algorithm is proposed to obtain a weighted sentiment time series. In the experiment, we obtain financial micro-blogs from some famous portal websites in China. After that, each micro-blog is segmented and preprocessed, and then the sentiment value is calculated for each day. Finally, an NARX time series model combined with the weighted sentiment series is created to forecast the future value of Shanghai Stock Exchange Composite Index (SSECI). The experiment shows that the new model makes an improvement in terms of the accuracy.

[1]  Li Wang,et al.  An ARIMA‐ANN Hybrid Model for Time Series Forecasting , 2013 .

[2]  Witold Pedrycz,et al.  Time Series Analysis, Modeling and Applications - A Computational Intelligence Perspective , 2013, Time Series Analysis, Modeling and Applications.

[3]  Hsinchun Chen,et al.  Evaluating sentiment in financial news articles , 2012, Decis. Support Syst..

[4]  Ying Chen,et al.  Associating stock prices with web financial information time series based on support vector regression , 2013, Neurocomputing.

[5]  Michael G. Madden,et al.  A neural network approach to predicting stock exchange movements using external factors , 2005, Knowl. Based Syst..

[6]  Johan Bollen,et al.  Twitter mood predicts the stock market , 2010, J. Comput. Sci..

[7]  Dirk Neumann,et al.  Automated news reading: Stock price prediction based on financial news using context-capturing features , 2013, Decis. Support Syst..

[8]  Pedro Sousa,et al.  Multi‐scale Internet traffic forecasting using neural networks and time series methods , 2010, Expert Syst. J. Knowl. Eng..

[9]  A. Romanowski,et al.  Towards Predicting Stock Price Moves with Aid of Sentiment Analysis of Twitter Social Network Data and Big Data Processing Environment , 2017 .

[10]  T. Yu,et al.  Performance analysis of Indian stock market index using neural network time series model , 2013, 2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering.

[11]  Aristides Gionis,et al.  Correlating financial time series with micro-blogging activity , 2012, WSDM '12.

[12]  Ling Liu,et al.  The role of social sentiment in stock markets: a view from joint effects of multiple information sources , 2017, Multimedia Tools and Applications.