Passive catheter visualization in magnetic resonance–guided endovascular therapy using multicycle projection dephasers

To improve upon the conventional projection dephaser (PD) method of background suppression and evaluate the use of multicycle projection dephasers to improve catheter conspicuity in background‐suppressed MR images.

[1]  M. Hill,et al.  Intra-arterial thrombolysis in acute ischemic stroke: a review of pharmacologic approaches , 2004, Expert review of cardiovascular therapy.

[2]  R. Frayne,et al.  REALISTIC HETEROGENEOUS TISSUE MODEL FOR EVALUATING BACKGROUND SUPPRESSION TECHNIQUES IN ENDOVASCULAR MAGNETIC RESONANCE , 2004 .

[3]  Max A Viergever,et al.  Passive tracking exploiting local signal conservation: The white marker phenomenon , 2003, Magnetic resonance in medicine.

[4]  R. Higashida,et al.  Trial Design and Reporting Standards for Intra-Arterial Cerebral Thrombolysis for Acute Ischemic Stroke , 2003, Stroke.

[5]  J. Carr,et al.  Passive catheter tracking using MRI: Comparison of conventional and magnetization‐prepared FLASH , 2002, Journal of magnetic resonance imaging : JMRI.

[6]  M. Viergever,et al.  Background suppression using magnetization preparation for contrast‐enhanced MR projection angiography , 2001, Magnetic resonance in medicine.

[7]  R. Frayne,et al.  Novel Magnetic Resonance Signal Enhancing Coating Material , 2001 .

[8]  R Frayne,et al.  Determination of optimal injection parameters for intraarterial gadolinium-enhanced MR angiography. , 2000, Journal of vascular and interventional radiology : JVIR.

[9]  A M Malek,et al.  Carotid artery stent placement for atherosclerotic disease: rationale, technique, and current status. , 2000, Radiology.

[10]  P. Boesiger,et al.  SENSE: Sensitivity encoding for fast MRI , 1999, Magnetic resonance in medicine.

[11]  Yu-Chung N. Cheng,et al.  Magnetic Resonance Imaging: Physical Principles and Sequence Design , 1999 .

[12]  C. Strother The rapidly expanding role of MR imaging techniques in the endovascular treatment of CNS diseases. , 1999, AJNR. American journal of neuroradiology.

[13]  H H Quick,et al.  MR versus fluoroscopic guidance of a catheter/guidewire system: In vitro comparison of steerability , 1998, Journal of magnetic resonance imaging : JMRI.

[14]  R Frayne,et al.  A rapid 2D time‐resolved variable‐rate k‐space sampling MR technique for passive catheter tracking during endovascular procedures , 1998, Magnetic resonance in medicine.

[15]  R W Günther,et al.  Catheter visualization using locally induced, actively controlled field inhomogeneities , 1997, Magnetic resonance in medicine.

[16]  V Rasche,et al.  Catheter tracking using continuous radial MRI , 1997, Magnetic resonance in medicine.

[17]  M A Viergever,et al.  MR-guided endovascular interventions: susceptibility-based catheter and near-real-time imaging technique. , 1997, Radiology.

[18]  M A Viergever,et al.  Visualization of dedicated catheters using fast scanning techniques with potential for MR‐guided vascular interventions , 1996, Magnetic resonance in medicine.

[19]  R Frayne,et al.  Time‐resolved contrast‐enhanced 3D MR angiography , 1996, Magnetic resonance in medicine.

[20]  Edward B. Diethrich,et al.  Stenting in the Carotid Artery: Initial Experience in 110 Patients , 1996, Journal of endovascular surgery : the official journal of the International Society for Endovascular Surgery.

[21]  S. Souza,et al.  Real‐time position monitoring of invasive devices using magnetic resonance , 1993, Magnetic resonance in medicine.

[22]  F Viñuela,et al.  Endovascular treatment of posterior circulation aneurysms by electrothrombosis using electrically detachable coils. , 1992, Journal of neurosurgery.

[23]  M. Gado,et al.  Projection angiograms of blood labeled by adiabatic fast passage , 1986, Magnetic resonance in medicine.