Spotting Trees with Few Leaves

We show two results related to finding trees and paths in graphs. First, we show that in $O^*(1.657^k2^{l/2})$ time one can either find a $k$-vertex tree with $l$ leaves in an $n$-vertex undirected graph or conclude that such a tree does not exist. Our solution can be applied as a subroutine to solve the $k$-Internal Spanning Tree problem in $O^*(min(3.455^k, 1.946^n))$ time using polynomial space, improving upon previous algorithms for this problem. In particular, for the first time we break the natural barrier of $O^*(2^n)$. Second, we show that the running time can be improved whenever the host graph admits a vertex coloring with few colors; it can be an ordinary proper vertex coloring, a fractional vertex coloring, or a vector coloring. In effect, we show improved bounds for Hamiltonicity and $k$-Path in any graph of maximum degree $\Delta=4,\ldots,12$ or with vector chromatic number at most 8. Our results extend the technique by Bjorklund [SIAM J. Comput., 43 (2014), pp. 280--299] and Bjorklund et al...

[1]  Igor Razgon Exact Computation of Maximum Induced Forest , 2006, SWAT.

[2]  Richard J. Lipton,et al.  A Probabilistic Remark on Algebraic Program Testing , 1978, Inf. Process. Lett..

[3]  Hans L. Bodlaender,et al.  On Linear Time Minor Tests with Depth-First Search , 1993, J. Algorithms.

[4]  Andreas Björklund,et al.  The Travelling Salesman Problem in Bounded Degree Graphs , 2008, ICALP.

[5]  Fahad Panolan,et al.  Representative Sets of Product Families , 2014, ESA.

[6]  Chun-Hung Liu An Upper Bound on the Fractional Chromatic Number of Triangle-Free Subcubic Graphs , 2014, SIAM J. Discret. Math..

[7]  Andreas Björklund,et al.  Determinant Sums for Undirected Hamiltonicity , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[8]  Fedor V. Fomin,et al.  Algorithm for finding k-vertex out-trees and its application to k-internal out-branching problem , 2009, J. Comput. Syst. Sci..

[9]  Daniel Král,et al.  The fractional chromatic number of triangle-free subcubic graphs , 2012, Eur. J. Comb..

[10]  David Eppstein,et al.  The Traveling Salesman Problem for Cubic Graphs , 2003, J. Graph Algorithms Appl..

[11]  Fabrizio Grandoni,et al.  A note on the complexity of minimum dominating set , 2006, J. Discrete Algorithms.

[12]  Jean-Sébastien Sereni,et al.  Subcubic triangle‐free graphs have fractional chromatic number at most 14/5 , 2013, J. Lond. Math. Soc..

[13]  L. Lovász Three short proofs in graph theory , 1975 .

[14]  Christian Sloper,et al.  Reducing to Independent Set Structure -- the Case of k-Internal Spanning Tree , 2005, Nord. J. Comput..

[15]  Monique Laurent,et al.  The Operator Psi for the Chromatic Number of a Graph , 2008, SIAM J. Optim..

[16]  Ioannis Koutis,et al.  Faster Algebraic Algorithms for Path and Packing Problems , 2008, ICALP.

[17]  Xuding Zhu,et al.  The Fractional Chromatic Number of Graphs of Maximum Degree at Most Three , 2009, SIAM J. Discret. Math..

[18]  Bernd Grtner,et al.  Approximation Algorithms and Semidefinite Programming , 2012 .

[19]  B. Monien How to Find Long Paths Efficiently , 1985 .

[20]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[21]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[22]  C. Berge Fractional Graph Theory , 1978 .

[23]  Andreas Björklund,et al.  Narrow sieves for parameterized paths and packings , 2010, J. Comput. Syst. Sci..

[24]  Gregory Gutin,et al.  Minimum leaf out-branching and related problems , 2008, Theor. Comput. Sci..

[25]  Meirav Zehavi Mixing Color Coding-Related Techniques , 2015, ESA.

[26]  Ryan Williams,et al.  Limits and Applications of Group Algebras for Parameterized Problems , 2009, ICALP.

[27]  San Skulrattanakulchai,et al.  Delta-List vertex coloring in linear time , 2002, Inf. Process. Lett..

[28]  Meirav Zehavi Algorithms for k-Internal Out-Branching , 2013, IPEC.

[29]  Fedor V. Fomin,et al.  A linear vertex kernel for maximum internal spanning tree , 2009, J. Comput. Syst. Sci..

[30]  Fenghui Zhang,et al.  Randomized Divide-and-Conquer: Improved Path, Matching, and Packing Algorithms , 2009 .

[31]  Henning Fernau,et al.  Exact and Parameterized Algorithms for Max Internal Spanning Tree , 2008, Algorithmica.

[32]  Andreas Björklund,et al.  Probably Optimal Graph Motifs , 2013, STACS.

[33]  Heidi Gebauer On the Number of Hamilton Cycles in Bounded Degree Graphs , 2008, ANALCO.

[34]  Jesper Nederlof Fast Polynomial-Space Algorithms Using Möbius Inversion: Improving on Steiner Tree and Related Problems , 2009, ICALP.

[35]  Andreas Björklund,et al.  Spotting Trees with Few Leaves , 2015, SIAM J. Discret. Math..

[36]  Andreas Björklund,et al.  Fast Witness Extraction Using a Decision Oracle , 2014, ESA.

[37]  Fedor V. Fomin,et al.  Efficient Computation of Representative Sets with Applications in Parameterized and Exact Algorithms , 2013, SODA.

[38]  Michal Pilipczuk,et al.  Solving Connectivity Problems Parameterized by Treewidth in Single Exponential Time , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[39]  Rajeev Motwani,et al.  Approximating the Longest Cycle Problem in Sparse Graphs , 2002, SIAM J. Comput..

[40]  Meirav Zehavi,et al.  Solving Parameterized Problems by Mixing Color Coding-Related Techniques , 2014, arXiv.org.

[41]  Hadas Shachnai,et al.  Representative families: A unified tradeoff-based approach , 2014, J. Comput. Syst. Sci..

[42]  Jianer Chen,et al.  A 2k-vertex Kernel for Maximum Internal Spanning Tree , 2015, WADS.

[43]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[44]  Kazuo Iwama,et al.  An Improved Exact Algorithm for Cubic Graph TSP , 2007, COCOON.

[45]  Mam Riess Jones Color Coding , 1962, Human factors.

[46]  Ryan Williams,et al.  Finding paths of length k in O*(2k) time , 2008, Inf. Process. Lett..

[47]  J. Pach,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .

[48]  Jesper Nederlof Fast Polynomial-Space Algorithms Using Inclusion-Exclusion , 2012, Algorithmica.

[49]  Fabrizio Grandoni,et al.  Sharp Separation and Applications to Exact and Parameterized Algorithms , 2010, Algorithmica.

[50]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.