On the size of the symmetry group of a perfect code

It is shown that for every nonlinear perfect code C of length n and rank r with n-log(n+1)[email protected][email protected]?n-1, |Sym(C)|@?|GL(n-r,2)|@?|GL(log(n+1)-(n-r),2)|@?(n+12^n^-^r)^n^-^r, where Sym(C) denotes the group of symmetries of C. This bound considerably improves a bound of Malyugin.

[1]  Alexander Vardy,et al.  On Perfect Codes and Tilings: Problems and Solutions , 1998, SIAM J. Discret. Math..

[2]  Olof Heden,et al.  On the symmetry group of extended perfect binary codes of length n+1 and rank n-log(n+1)+2 , 2012, Adv. Math. Commun..

[3]  Sergey V. Avgustinovich,et al.  The Classification of Some Perfect Codes , 2004, Des. Codes Cryptogr..

[4]  Olof Heden,et al.  A survey of perfect codes , 2008, Adv. Math. Commun..

[5]  Sergey V. Avgustinovich,et al.  On the Structure of Symmetry Groups of Vasil’ev Codes , 2005, Probl. Inf. Transm..

[6]  Patric R. J. Östergård,et al.  The Perfect Binary One-Error-Correcting Codes of Length $15$: Part I—Classification , 2008, IEEE Transactions on Information Theory.

[7]  Denis S. Krotov,et al.  On the structure of non-full-rank perfect q-ary codes , 2009, Adv. Math. Commun..

[8]  Ferdinand Hergert Algebraische Methoden für nichtlineare Codes , 1985 .

[9]  Sergey V. Avgustinovich,et al.  On the Number of $1$-Perfect Binary Codes: A Lower Bound , 2008, IEEE Transactions on Information Theory.

[10]  Richard W. Hamming,et al.  Error detecting and error correcting codes , 1950 .

[11]  Alexander Vardy,et al.  Perfect binary codes: constructions, properties, and enumeration , 1994, IEEE Trans. Inf. Theory.

[12]  T. Etzion,et al.  On perfect codes and tilings: problems and solutions , 1997, Proceedings of IEEE International Symposium on Information Theory.

[13]  Olof Heden,et al.  On the existence of extended perfect binary codes with trivial symmetry group , 2009, Adv. Math. Commun..

[14]  K. Phelps A GENERAL PRODUCT CONSTRUCTION FOR ERROR CORRECTING CODES , 1984 .