Sequence Braiding: Visual Overviews of Temporal Event Sequences and Attributes.

Temporal event sequence alignment has been used in many domains to visualize nuanced changes and interactions over time. Existing approaches align one or two sentinel events. Overview tasks require examining all alignments of interest using interaction and time or juxtaposition of many visualizations. Furthermore, any event attribute overviews are not closely tied to sequence visualizations. We present SEQUENCE BRAIDING, a novel overview visualization for temporal event sequences and attributes using a layered directed acyclic network. SEQUENCE BRAIDING visually aligns many temporal events and attribute groups simultaneously and supports arbitrary ordering, absence, and duplication of events. In a controlled experiment we compare SEQUENCE BRAIDING and IDMVis on user task completion time, correctness, error, and confidence. Our results provide good evidence that users of SEQUENCE BRAIDING can understand high-level patterns and trends faster and with similar error. A full version of this paper with all appendices; the evaluation stimuli, data, and analysis code; and source code are available at osf.io/mq2wt.

[1]  Ben Shneiderman,et al.  LifeFlow: visualizing an overview of event sequences , 2011, CHI.

[2]  Peter Eades,et al.  Edge crossings in drawings of bipartite graphs , 1994, Algorithmica.

[3]  Jean-Daniel Fekete,et al.  Task taxonomy for graph visualization , 2006, BELIV '06.

[4]  L. Törnqvist,et al.  How Should Relative Changes be Measured , 1985 .

[5]  Petra Mutzel,et al.  An Alternative Method to Crossing Minimization on Hierarchical Graphs , 1996, GD.

[6]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[7]  Cody Dunne,et al.  IDMVis: Temporal Event Sequence Visualization for Type 1 Diabetes Treatment Decision Support , 2019, IEEE Transactions on Visualization and Computer Graphics.

[8]  Jian Pei,et al.  Online Visual Analytics of Text Streams , 2015, IEEE Transactions on Visualization and Computer Graphics.

[9]  P Stothard,et al.  The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. , 2000, BioTechniques.

[10]  Gennady L. Andrienko,et al.  Exploratory analysis of spatial and temporal data - a systematic approach , 2005 .

[11]  Jian Zhao,et al.  egoSlider: Visual Analysis of Egocentric Network Evolution , 2016, IEEE Transactions on Visualization and Computer Graphics.

[12]  Yue Lu,et al.  A Polynomial Time Solvable Formulation of Multiple Sequence Alignment , 2005, RECOMB.

[13]  Vance E. Waddle,et al.  Graph Layout for Displaying Data Structures , 2000, Graph Drawing.

[14]  S. Goodman,et al.  Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations , 2016, European Journal of Epidemiology.

[15]  Michael Jünger,et al.  A Polyhedral Approach to the Multi-Layer Crossing Minimization Problem , 1997, GD.

[16]  HeerJeffrey,et al.  D3 Data-Driven Documents , 2011 .

[17]  Kwan-Liu Ma,et al.  Software evolution storylines , 2010, SOFTVIS '10.

[18]  John N. Warfield,et al.  Crossing Theory and Hierarchy Mapping , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[19]  Yingcai Wu,et al.  iStoryline: Effective Convergence to Hand-drawn Storylines , 2019, IEEE Transactions on Visualization and Computer Graphics.

[20]  Katharina Kaiser,et al.  CareCruiser: Exploring and visualizing plans, events, and effects interactively , 2011, 2011 IEEE Pacific Visualization Symposium.

[21]  W. A. Stoller Intensive diabetes management , 2002 .

[22]  Bella Martin,et al.  Universal Methods of Design: 100 Ways to Research Complex Problems, Develop Innovative Ideas, and Design Effective Solutions , 2012 .

[23]  Robert Tibshirani,et al.  Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy , 1986 .

[24]  Tamara Munzner,et al.  Visualization Analysis and Design , 2014, A.K. Peters visualization series.

[25]  ShneidermanBen,et al.  Interactive Information Visualization to Explore and Query Electronic Health Records , 2013 .

[26]  Mitsuhiko Toda,et al.  Methods for Visual Understanding of Hierarchical System Structures , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[27]  Petra Mutzel,et al.  Two-Layer Planarization in Graph Drawing , 1998, ISAAC.

[28]  Ben Shneiderman,et al.  Interactive Information Visualization to Explore and Query Electronic Health Records , 2013, Found. Trends Hum. Comput. Interact..

[29]  Ben Shneiderman,et al.  Temporal Event Sequence Simplification , 2013, IEEE Transactions on Visualization and Computer Graphics.

[30]  I. V. Ramakrishnan,et al.  The Five Ws for Information Visualization with Application to Healthcare Informatics , 2013, IEEE Transactions on Visualization and Computer Graphics.

[31]  G. Cumming Understanding the New Statistics: Effect Sizes, Confidence Intervals, and Meta-Analysis , 2011 .

[32]  K. Barnard,et al.  Clinical Utility of SMBG: Recommendations on the Use and Reporting of SMBG in Clinical Research , 2015, Diabetes Care.

[33]  Mira Dontcheva,et al.  MatrixWave: Visual Comparison of Event Sequence Data , 2015, CHI.

[34]  Fei-Yue Wang,et al.  A Survey of Traffic Data Visualization , 2015, IEEE Transactions on Intelligent Transportation Systems.

[35]  Y. Jang,et al.  Standards of Medical Care in Diabetes-2010 by the American Diabetes Association: Prevention and Management of Cardiovascular Disease , 2010 .

[36]  Michael A. Bekos,et al.  Line Crossing Minimization on Metro Maps , 2007, Graph Drawing.

[37]  Gianpaolo Oriolo,et al.  An approximate A* algorithm and its application to the SCS problem , 2003, Theor. Comput. Sci..

[38]  Inanç Birol,et al.  Hive plots - rational approach to visualizing networks , 2012, Briefings Bioinform..

[39]  Ben Shneiderman,et al.  Aligning temporal data by sentinel events: discovering patterns in electronic health records , 2008, CHI.

[40]  Peter J. Stuckey,et al.  Optimal Sankey Diagrams Via Integer Programming , 2018, 2018 IEEE Pacific Visualization Symposium (PacificVis).

[41]  Peter J. Stuckey,et al.  Optimal k-Level Planarization and Crossing Minimization , 2010, GD.

[42]  Fabian Beck,et al.  Set Streams: Visual Exploration of Dynamic Overlapping Sets , 2020, Comput. Graph. Forum.

[43]  Angus Graeme Forbes,et al.  TimeArcs: Visualizing Fluctuations in Dynamic Networks , 2016, Comput. Graph. Forum.

[44]  David Gotz,et al.  Data-driven exploration of care plans for patients , 2013, CHI Extended Abstracts.

[45]  Hiroshi Imai,et al.  Fast A Algorithms for Multiple Sequence Alignment , 1994 .

[46]  G. Hommel,et al.  Confidence interval or p-value?: part 4 of a series on evaluation of scientific publications. , 2009, Deutsches Arzteblatt international.

[47]  Fei Wang,et al.  Mining and exploring care pathways from electronic medical records with visual analytics , 2015, J. Biomed. Informatics.

[48]  James King,et al.  Sequence Bundles: a novel method for visualising, discovering and exploring sequence motifs , 2014, BMC Proceedings.

[49]  Mengchen Liu,et al.  StoryFlow: Tracking the Evolution of Stories , 2013, IEEE Transactions on Visualization and Computer Graphics.

[50]  Jarke J. van Wijk,et al.  Reordering Massive Sequence Views: Enabling temporal and structural analysis of dynamic networks , 2013, 2013 IEEE Pacific Visualization Symposium (PacificVis).

[51]  Kwan-Liu Ma,et al.  An Efficient Framework for Generating Storyline Visualizations from Streaming Data , 2015, IEEE Transactions on Visualization and Computer Graphics.

[52]  Emden R. Gansner,et al.  A Technique for Drawing Directed Graphs , 1993, IEEE Trans. Software Eng..

[53]  P. Riehmann,et al.  Interactive Sankey diagrams , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[54]  Ben Shneiderman,et al.  Coping with Volume and Variety in Temporal Event Sequences: Strategies for Sharpening Analytic Focus , 2017, IEEE Transactions on Visualization and Computer Graphics.

[55]  R. Doolittle,et al.  Progressive sequence alignment as a prerequisitetto correct phylogenetic trees , 2007, Journal of Molecular Evolution.

[56]  Jarke J. van Wijk,et al.  BaobabView: Interactive construction and analysis of decision trees , 2011, 2011 IEEE Conference on Visual Analytics Science and Technology (VAST).

[57]  Roberto Tamassia,et al.  Handbook on Graph Drawing and Visualization , 2013 .

[58]  Niklas Elmqvist,et al.  Exploring the design space of composite visualization , 2012, 2012 IEEE Pacific Visualization Symposium.

[59]  Bum Chul Kwon,et al.  Peekquence : Visual Analytics for Event Sequence Data , 2016 .

[60]  Cody Dunne,et al.  Evaluating Alignment Approaches in Superimposed Time-Series and Temporal Event-Sequence Visualizations , 2019, ArXiv.

[61]  Kim Marriott,et al.  Evaluating Perceptually Complementary Views for Network Exploration Tasks , 2017, CHI.

[62]  Martin Nöllenburg,et al.  An Improved Algorithm for the Metro-line Crossing Minimization Problem , 2009, GD.

[63]  Tamara Munzner,et al.  A Multi-Level Typology of Abstract Visualization Tasks , 2013, IEEE Transactions on Visualization and Computer Graphics.

[64]  Allison Woodruff,et al.  Guidelines for using multiple views in information visualization , 2000, AVI '00.

[65]  David Gotz,et al.  Exploring Flow, Factors, and Outcomes of Temporal Event Sequences with the Outflow Visualization , 2012, IEEE Transactions on Visualization and Computer Graphics.