Design of inorganic compounds with the use of precedent-based pattern recognition methods

The possibility of searching for classification regularities in large arrays of chemical information with the use precedent-based recognition methods is discussed. The results of application of these regularities to the computer-assisted design of inorganic compounds promising for the search for new materials for electronics are presented.

[1]  T. Fujiwara,et al.  Atomic disorder and magnetic property in Co-based Heusler alloys Co2MnZ (Z = Si, Ge, Sn) , 2009 .

[2]  A. N. Dmitriev,et al.  A PRINCIPLE OF CLASSIFICATION AND PREDICTION OF GEOLOGICAL OBJECTS AND PHENOMENA , 1968 .

[3]  N N Kiselyova,et al.  Prediction of Intermetallic Compounds , 2009 .

[4]  C. Gorter,et al.  Progress in low temperature physics , 1964 .

[5]  Jürgen Kübler,et al.  Formation and coupling of magnetic moments in Heusler alloys , 1983 .

[6]  G. J. Snyder,et al.  Thermoelectric Properties of Chalcogenides with the Spinel Structure , 2001 .

[7]  N N Kiselyova,et al.  Prediction of intermetallic compounds , 2009 .

[8]  G. Fecher,et al.  Spintronics: a challenge for materials science and solid-state chemistry. , 2007, Angewandte Chemie.

[9]  M. Pepper,et al.  Cobalt-Based Heusler Alloys for Spin-Injection Devices , 2003 .

[10]  M. Ibarra,et al.  Incommensurate modulated structure of the ferromagnetic shape-memory Ni2MnGa martensite , 2006 .

[11]  D. Pines Superconductivity in the Periodic System , 1958 .

[12]  Kyosuke Saito,et al.  Enhancement of spin-asymmetry by L21-ordering in Co2MnSi/Cr/Co2Mnsi current-perpendicular-to-plane magnetoresistance devices , 2009 .

[13]  Xilin Peng,et al.  “All-Heusler alloy” current-perpendicular-to-plane giant magnetoresistance , 2009 .

[14]  Thomas L. Isenhour,et al.  Chemical applications of pattern recognition , 1975 .

[15]  N. Tezuka,et al.  Structural and magnetic properties and tunnel magnetoresistance for Co2(Cr,Fe)Al and Co2FeSi full-Heusler alloys , 2006 .

[16]  N. N. Kiselyova,et al.  Computer Information Resources in Inorganic Chemistry and Materials Science , 2010 .

[17]  Y. Tret’yakov,et al.  Magnetic semiconductors - Chalcogenide Spinels , 1981 .

[18]  S. Siebentritt Wide gap chalcopyrites: material properties and solar cells , 2002 .

[19]  R. W. Gurry,et al.  Physical chemistry of metals , 1953 .

[20]  B. Matthias Chapter V Superconductivity in the Periodic System , 1957 .

[21]  Keiichi Nagasaka,et al.  CPP-GMR technology for magnetic read heads of future high-density recording systems , 2009 .

[22]  K. Miyatani Magnetic Semiconductors: New Interpretation , 1980 .

[23]  M. Neumann,et al.  Magnetic splitting in x-ray photoelectron spectroscopy Cr L spectra of Fe2CrAl, Co2CrAl and Cu2CrAl , 2001 .

[24]  T. Atake,et al.  Survey of Chalcogenide Superconductors , 1999 .

[25]  U. Rau,et al.  Wide-Gap Chalcopyrites , 2006 .

[26]  R. Saxena,et al.  Magnetic hyperfine field in the Heusler alloys Co2YZ (Y = V, Nb, Ta, Cr; Z = Al, Ga) , 1996 .

[27]  T. Ambrose,et al.  Growth and Magnetotransport Properties of Thin Co2MnGe Layered Structures , 2006 .