On approximations for queues, II: Shape constraints
暂无分享,去创建一个
[1] J. Kingman. Some inequalities for the queue GI/G/1 , 1962 .
[2] K. T. Marshall,et al. Some Inequalities in Queuing , 1968, Oper. Res..
[3] H. Stoyan. Monotonieeigenschaften der Kundenwartezeiten im Modell GI/G/1 , 1969 .
[4] Anatol Kuczura,et al. The interrupted poisson process as an overflow process , 1973 .
[5] Jonathan Rosenhead,et al. Queueing theory in OR , 1973 .
[6] Wolfgang Kraemer,et al. Approximate Formulae for the Delay in the Queueing System GI/G/ 1 , 1976 .
[7] William G. Marchal,et al. An Approximate Formula for Waiting Time in Single Server Queues , 1976 .
[8] Hirotaka Sakasegawa,et al. An approximation formulaLq ≃α·ρβ/(1-ρ) , 1977 .
[9] D. Daley. Inequalities for moments of tails of random variables, with a queueing application , 1977 .
[10] Philip S. Yu. On accuracy improvement and applicability conditions of diffusion approximation with applications to modelling of computer systems , 1977 .
[11] J. Keilson. Markov Chain Models--Rarity And Exponentiality , 1979 .
[12] J. A. Buzacott,et al. On the approximations to the single server queue , 1980 .
[13] Ward Whitt,et al. Approximating a point process by a renewal process , 1981 .
[14] Ward Whitt,et al. The marshall and stoyan bounds for IMRL/G/1 queues are tight , 1982, Oper. Res. Lett..
[15] Ward Whitt,et al. Refining diffusion approximations for queues , 1982, Oper. Res. Lett..
[16] W. Whitt,et al. The Queueing Network Analyzer , 1983, The Bell System Technical Journal.
[17] W. Whitt. On approximations for queues, III: Mixtures of exponential distributions , 1984, AT&T Bell Laboratories Technical Journal.
[18] W. Whitt. On approximations for queues, I: Extremal distributions , 1984, AT&T Bell Laboratories Technical Journal.