Recent developments in high integration multi-standard CMOS transceivers for personal communication systems

Issues associated with the integration of transceiver components on a single silicon substrate are discussed. In particular, recently proposed receiver and transmitter architectures for high integration are examined on the promise of providing multistandard capability. In addition, existing barriers to lower power transceiver operation are examined as well as some proposed directions for future integrated transceiver research and development.

[1]  H. Samavati,et al.  A 115 mW CMOS GPS receiver , 1998, 1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC. First Edition (Cat. No.98CH36156).

[2]  D. Edelstein,et al.  Monolithic spiral inductors fabricated using a VLSI Cu-damascene interconnect technology and low-loss substrates , 1996, International Electron Devices Meeting. Technical Digest.

[3]  J. H. Havens,et al.  A 2.7 V to 4.5 V single-chip GSM transceiver RF integrated circuit , 1995 .

[4]  Robert G. Meyer,et al.  Future directions in silicon ICs for RF personal communications , 1995, Proceedings of the IEEE 1995 Custom Integrated Circuits Conference.

[5]  Dan H. Wolaver,et al.  Phase-Locked Loop Circuit Design , 1991 .

[6]  G. Chien,et al.  A 1.9 GHz wide-band IF double conversion CMOS integrated receiver for cordless telephone applications , 1997, 1997 IEEE International Solids-State Circuits Conference. Digest of Technical Papers.

[7]  B. Boser,et al.  A Low-Noise RF Voltage-Controlled Oscillator Using On-Chip High-Q Three-Dimensional Coil Inductor and Micromachined Variable Capacitor , 1998 .

[8]  R. H. Baker,et al.  International Solid-State Circuits Conference , 1968 .

[9]  F. Behbahani,et al.  A 2.7 V GSM transceiver ICs with on-chip filtering , 1995, Proceedings ISSCC '95 - International Solid-State Circuits Conference.

[10]  Michiel Steyaert,et al.  A 1.5 V, wide band 3 GHz, CMOS quadrature direct up-converter for multi-mode wireless communications , 1998, Proceedings of the IEEE 1998 Custom Integrated Circuits Conference (Cat. No.98CH36143).

[11]  P.R. Gray,et al.  A 1.9GHz 1W CMOS class E power amplifier for wireless communications , 1999, Proceedings of the 24th European Solid-State Circuits Conference.

[12]  THE HAGUE-THE NETHERLANDS , 2022 .

[13]  W. McFarland,et al.  An IC for linearizing RF power amplifiers using envelope elimination and restoration , 1998, 1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC. First Edition (Cat. No.98CH36156).

[14]  C. Nguyen High-Q micromechanical oscillators and filters for communications , 1997, Proceedings of 1997 IEEE International Symposium on Circuits and Systems. Circuits and Systems in the Information Age ISCAS '97.

[15]  Behzad Razavi,et al.  A 2-GHz 1.6-mW phase-locked loop , 1997 .

[16]  Michiel Steyaert,et al.  A single-chip 900 MHz CMOS receiver front-end with a high performance low-IF topology , 1995, IEEE J. Solid State Circuits.

[17]  P. Baltus,et al.  An ultra low-power RF bipolar technology on glass , 1997, International Electron Devices Meeting. IEDM Technical Digest.

[18]  A. Rofougaran,et al.  The future of CMOS wireless transceivers , 1997, 1997 IEEE International Solids-State Circuits Conference. Digest of Technical Papers.

[19]  Behzad Razavi,et al.  Receiver for Dual-Band Applications , 1998 .

[20]  T. Endo,et al.  A 2.7 V GSM RF transceiver IC , 1997, 1997 IEEE International Solids-State Circuits Conference. Digest of Technical Papers.

[21]  Donald K. Weaver,et al.  A Third Method of Generation and Detection of Single-Sideband Signals , 1956, Proceedings of the IRE.

[22]  D. M. Haines,et al.  Direct conversion linear transceiver design , 1989 .