Sparse tensor framework for implementation of general local correlation methods.

Coupled-cluster methods offer unprecedented accuracy for a wide range of chemically important properties, but the steep scaling of computational cost with system size makes widespread use challenging. Local approximations, building on the short-range nature of electron correlation effects in insulators, help a great deal, but are much more complicated than their canonical counterparts. In this work we discuss an automated implementation scheme for local coupled-cluster methods, based on an interpreter and an underlying representation of sparse tensors. We demonstrate the efficacy of the approach through implementation of a very wide range of singles-and-doubles-based coupled-cluster schemes.

[1]  Trygve Helgaker,et al.  The integral‐direct coupled cluster singles and doubles model , 1996 .

[2]  Jing Ma,et al.  Linear scaling local correlation approach for solving the coupled cluster equations of large systems , 2002, J. Comput. Chem..

[3]  Mihály Kállay,et al.  Higher excitations in coupled-cluster theory , 2001 .

[4]  Werner Kutzelnigg,et al.  Direct Calculation of Approximate Natural Orbitals and Natural Expansion Coefficients of Atomic and Molecular Electronic Wavefunctions. II. Decoupling of the Pair Equations and Calculation of the Pair Correlation Energies for the Be and LiH Ground States , 1968 .

[5]  Martin Schütz,et al.  A multistate local coupled cluster CC2 response method based on the Laplace transform. , 2009, The Journal of chemical physics.

[6]  Marcel Nooijen,et al.  pCCSD: parameterized coupled-cluster theory with single and double excitations. , 2010, The Journal of chemical physics.

[7]  Daniel Kats,et al.  Second-order variational coupled-cluster linear-response method: A Hermitian time-dependent theory , 2011 .

[8]  Hans-Joachim Werner,et al.  Local perturbative triples correction (T) with linear cost scaling , 2000 .

[9]  Daniel Kats,et al.  Local Approximations for an Efficient and Accurate Treatment of Electron Correlation and Electron Excitations in Molecules , 2011 .

[10]  F. Neese,et al.  Efficient and accurate local approximations to coupled-electron pair approaches: An attempt to revive the pair natural orbital method. , 2009, The Journal of chemical physics.

[11]  Wei Li,et al.  A refined cluster-in-molecule local correlation approach for predicting the relative energies of large systems. , 2012, Physical chemistry chemical physics : PCCP.

[12]  P Pulay,et al.  Local Treatment of Electron Correlation , 1993 .

[13]  S. Hirata Tensor Contraction Engine: Abstraction and Automated Parallel Implementation of Configuration-Interaction, Coupled-Cluster, and Many-Body Perturbation Theories , 2003 .

[14]  David E. Bernholdt,et al.  Automatic code generation for many-body electronic structure methods: the tensor contraction engine , 2006 .

[15]  Martin Schütz,et al.  Low-order scaling local electron correlation methods. V. Connected triples beyond (T): Linear scaling local CCSDT-1b , 2002 .

[16]  Daniel Kats,et al.  Application of Hermitian time-dependent coupled-cluster response Ansätze of second order to excitation energies and frequency-dependent dipole polarizabilities , 2012 .

[17]  Frederick R Manby,et al.  Tensor factorizations of local second-order Møller-Plesset theory. , 2010, The Journal of chemical physics.

[18]  Wei Li,et al.  Local correlation calculations using standard and renormalized coupled-cluster approaches. , 2009, The Journal of chemical physics.

[19]  Jens Oddershede,et al.  Polarization Propagator Calculations , 1978 .

[20]  Frederick R Manby,et al.  The orbital-specific-virtual local coupled cluster singles and doubles method. , 2012, The Journal of chemical physics.

[21]  Andrew G. Taube,et al.  Rethinking linearized coupled-cluster theory. , 2009, The Journal of chemical physics.

[22]  J. Cizek On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods , 1966 .

[23]  Hans-Joachim Werner,et al.  An efficient local coupled cluster method for accurate thermochemistry of large systems. , 2011, The Journal of chemical physics.

[24]  Frederick R. Manby,et al.  Linear scaling local coupled cluster theory with density fitting. Part I: 4-external integrals , 2003 .

[25]  Martin Schütz,et al.  Low-order scaling local electron correlation methods. III. Linear scaling local perturbative triples correction (T) , 2000 .

[26]  T. Crawford,et al.  An Introduction to Coupled Cluster Theory for Computational Chemists , 2007 .

[27]  R. Bartlett Many-Body Perturbation Theory and Coupled Cluster Theory for Electron Correlation in Molecules , 1981 .

[28]  J. L. Whitten,et al.  Coulombic potential energy integrals and approximations , 1973 .

[29]  Martin Schütz,et al.  Molpro: a general‐purpose quantum chemistry program package , 2012 .

[30]  Josef Paldus,et al.  Automation of the implementation of spin‐adapted open‐shell coupled‐cluster theories relying on the unitary group formalism , 1994 .

[31]  Frederick R. Manby,et al.  Fast linear scaling second-order Møller-Plesset perturbation theory (MP2) using local and density fitting approximations , 2003 .

[32]  Isaiah Shavitt,et al.  Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory , 2009 .

[33]  F. Neese,et al.  Accurate thermochemistry from a parameterized coupled-cluster singles and doubles model and a local pair natural orbital based implementation for applications to larger systems. , 2012, The Journal of chemical physics.

[34]  R. Ahlrichs,et al.  Many body perturbation calculations and coupled electron pair models , 1979 .

[35]  Michael Hanrath,et al.  A fully simultaneously optimizing genetic approach to the highly excited coupled-cluster factorization problem. , 2011, The Journal of chemical physics.

[36]  Peter Pulay,et al.  Comparison of the boys and Pipek–Mezey localizations in the local correlation approach and automatic virtual basis selection , 1993, J. Comput. Chem..

[37]  Poul Jørgensen,et al.  The divide-expand-consolidate family of coupled cluster methods: numerical illustrations using second order Møller-Plesset perturbation theory. , 2012, The Journal of chemical physics.

[38]  Michael Hanrath,et al.  An efficient matrix-matrix multiplication based antisymmetric tensor contraction engine for general order coupled cluster. , 2010, The Journal of chemical physics.

[39]  Janos Ladik,et al.  Coupled-cluster studies. II. The role of localization in correlation calculations on extended systems , 1985 .

[40]  John P. Perdew,et al.  The exchange-correlation energy of a metallic surface , 1975 .

[41]  Jeppe Olsen,et al.  The initial implementation and applications of a general active space coupled cluster method , 2000 .

[42]  Peter Pulay,et al.  Local configuration interaction: An efficient approach for larger molecules , 1985 .

[43]  Rodney J Bartlett,et al.  A natural linear scaling coupled-cluster method. , 2004, The Journal of chemical physics.

[44]  Peter Pulay,et al.  Localizability of dynamic electron correlation , 1983 .

[45]  Zoltán Rolik,et al.  A general-order local coupled-cluster method based on the cluster-in-molecule approach. , 2011, The Journal of chemical physics.

[46]  Dimitrios G Liakos,et al.  Efficient and accurate approximations to the local coupled cluster singles doubles method using a truncated pair natural orbital basis. , 2009, The Journal of chemical physics.

[47]  Evert Jan Baerends,et al.  Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure , 1973 .

[48]  Martin Head-Gordon,et al.  A sparse framework for the derivation and implementation of fermion algebra , 2010 .

[49]  Branislav Jansík,et al.  Linear scaling coupled cluster method with correlation energy based error control. , 2010, The Journal of chemical physics.

[50]  Philippe Y. Ayala,et al.  Linear scaling second-order Moller–Plesset theory in the atomic orbital basis for large molecular systems , 1999 .

[51]  Peter Pulay,et al.  The local correlation treatment. II. Implementation and tests , 1988 .

[52]  Frederick R Manby,et al.  Optimization of orbital-specific virtuals in local Møller-Plesset perturbation theory. , 2012, The Journal of chemical physics.

[53]  Rodney J. Bartlett,et al.  SCF and localized orbitals in ethylene: MBPT/CC results and comparison with one-million configuration Cl☆ , 1983 .

[54]  Michael Dolg,et al.  Fully automated implementation of the incremental scheme: application to CCSD energies for hydrocarbons and transition metal compounds. , 2007, The Journal of chemical physics.

[55]  Hermann Stoll,et al.  The correlation energy of crystalline silicon , 1992 .

[56]  Hans-Joachim Werner,et al.  Simplified CCSD(T)-F12 methods: theory and benchmarks. , 2009, The Journal of chemical physics.

[57]  Christof Hättig,et al.  Local explicitly correlated second- and third-order Møller-Plesset perturbation theory with pair natural orbitals. , 2011, The Journal of chemical physics.

[58]  Martin Head-Gordon,et al.  Noniterative local second order Mo/ller–Plesset theory: Convergence with local correlation space , 1998 .

[59]  Paul G. Mezey,et al.  A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions , 1989 .

[60]  Peter Fulde,et al.  On the computation of electronic correlation energies within the local approach , 1980 .

[61]  Frederick R Manby,et al.  The orbital-specific virtual local triples correction: OSV-L(T). , 2013, The Journal of chemical physics.

[62]  Curtis L. Janssen,et al.  The automated solution of second quantization equations with applications to the coupled cluster approach , 1991 .

[63]  John R. Sabin,et al.  On some approximations in applications of Xα theory , 1979 .

[64]  F. Furche Developing the random phase approximation into a practical post-Kohn-Sham correlation model. , 2008, The Journal of chemical physics.

[65]  Werner Kutzelnigg,et al.  Localization and Correlation , 1975 .

[66]  Hans-Joachim Werner,et al.  Local treatment of electron correlation in coupled cluster theory , 1996 .

[67]  Hans-Joachim Werner,et al.  A comparison of the efficiency and accuracy of the quadratic configuration interaction (QCISD), coupled cluster (CCSD), and Brueckner coupled cluster (BCCD) methods , 1992 .

[68]  Thomas M Henderson,et al.  The ground state correlation energy of the random phase approximation from a ring coupled cluster doubles approach. , 2008, The Journal of chemical physics.

[69]  Isaiah Shavitt,et al.  Comparison of high-order many-body perturbation theory and configuration interaction for H2O , 1977 .

[70]  Wilfried Meyer,et al.  Ionization energies of water from PNO‐CI calculations , 2009 .