Efficient Enumeration of Ordered Trees with kLeaves (Extended Abstract)

In this paper, we give a simple algorithm to generate all ordered trees with exactly n vertices including exactly k leaves. The best known algorithm generates such trees in O(n − k) time for each, while our algorithm generates such trees in O(1) time for each in worst case.

[1]  A. Nijenhuis Combinatorial algorithms , 1975 .

[2]  Shin-Ichi Nakano,et al.  Journal of Graph Algorithms and Applications Listing All Plane Graphs , 2022 .

[3]  Brendan D. McKay,et al.  Isomorph-Free Exhaustive Generation , 1998, J. Algorithms.

[4]  Herbert S. Wilf,et al.  Combinatorial Algorithms: An Update , 1987 .

[5]  Sandra Mitchell Hedetniemi,et al.  Constant Time Generation of Rooted Trees , 1980, SIAM J. Comput..

[6]  James F. Korsh,et al.  Multiset Permutations and Loopless Generation of Ordered Trees with Specified Degree Sequence , 2000, J. Algorithms.

[7]  David Avis,et al.  Reverse Search for Enumeration , 1996, Discret. Appl. Math..

[8]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[9]  Shin-Ichi Nakano,et al.  Constant Time Generation of Integer Partitions , 2007, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[10]  R. Read Every one a Winner or how to Avoid Isomorphism Search when Cataloguing Combinatorial Configurations , 1978 .

[11]  Brendan D. McKay,et al.  Constant Time Generation of Free Trees , 1986, SIAM J. Comput..

[12]  Shin-Ichi Nakano Efficient generation of triconnected plane triangulations , 2004, Comput. Geom..

[13]  R. Stanley,et al.  Enumerative Combinatorics: Index , 1999 .

[14]  Jean Marcel Pallo,et al.  Generating trees with n nodes and m leaves , 1987 .

[15]  Shin-Ichi Nakano,et al.  Efficient generation of plane trees , 2002, Inf. Process. Lett..

[16]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[17]  Joe Sawada Generating rooted and free plane trees , 2006, TALG.

[18]  Shmuel Zaks,et al.  Generating Trees and Other Combinatorial Objects Lexicographically , 1979, SIAM J. Comput..

[19]  Yukio Shibata,et al.  How to Obtain the Complete List of Caterpillars (Extended Abstract) , 2003, COCOON.

[20]  Ivan Stojmenovic,et al.  Fast algorithms for genegrating integer partitions , 1998, Int. J. Comput. Math..

[21]  Shin-Ichi Nakano,et al.  Constant Time Generation of Trees with Specified Diameter , 2004, WG.

[22]  Frank Ruskey,et al.  The advantages of forward thinking in generating rooted and free trees , 1999, SODA '99.

[23]  Trevor I. Fenner,et al.  A Binary Tree Representation and Related Algorithms for Generating Partitions , 1980, Comput. J..

[24]  Leslie Ann Goldberg,et al.  Efficient algorithms for listing combinatorial structures , 1993 .

[25]  Donald E. Knuth,et al.  The Art of Computer Programming, Volume 4, Fascicle 2: Generating All Tuples and Permutations (Art of Computer Programming) , 2005 .

[26]  Shin-Ichi Nakano,et al.  Generating Colored Trees , 2005, WG.

[27]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[28]  James F. Korsh,et al.  Loopless Generation of Trees with Specified Degrees , 2002, Comput. J..

[29]  Shin-Ichi Nakano,et al.  Efficient Generation of Plane Triangulations without Repetitions , 2001, ICALP.