Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems

We theoretically study a parallel optical configuration which includes N periodically coupled whispering-gallery-mode resonators. The model shows an obvious effect which has a direct analogy with the phenomenon of multiple electromagnetically induced transparency in quantum systems. The numerical simulations illuminate that the frequency transparency windows are sharp and highly transparent. We also briefly discuss the experimental feasibility of the current scheme in two practical systems, microrings and microdisks.

[1]  Hesam Oveys,et al.  Tuning whispering gallery modes in optical microspheres with chemical etching. , 2005, Optics express.

[2]  H. Kimble,et al.  Quantum structure and dynamics for atom galleries , 1997 .

[3]  Zheng-Fu Han,et al.  Realizing quantum controlled phase flip through cavity QED (5 pages) , 2004 .

[4]  Lukin,et al.  Experimental Demonstration of Laser Oscillation without Population Inversion via Quantum Interference in Rb. , 1995, Physical review letters.

[5]  S. Spillane,et al.  Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics (10 pages) , 2004, quant-ph/0410218.

[6]  Michal Lipson,et al.  Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency , 2006 .

[7]  Harris,et al.  Dispersive properties of electromagnetically induced transparency. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[8]  A. Matsko,et al.  Tunable delay line with interacting whispering-gallery-mode resonators. , 2004, Optics letters.

[9]  A. Imamoğlu,et al.  Giant Kerr nonlinearities obtained by electromagnetically induced transparency. , 1996, Optics letters.

[10]  E. Arimondo Coherent Population Trapping in Laser Spectroscopy , 1996 .

[11]  Lukin,et al.  Nonlinear optics and quantum entanglement of ultraslow single photons , 2000, Physical review letters.

[12]  Michael L. Gorodetsky,et al.  Fundamental thermal fluctuations in microspheres , 2004 .

[13]  Wang Yao,et al.  Theory of control of the spin-photon interface for quantum networks. , 2005, Physical review letters.

[14]  K. Vahala,et al.  Ultralow loss, high Q, four port resonant couplers for quantum optics and photonics. , 2004, Physical review letters.

[15]  Coupling nanocrystals to a high-q silica microsphere: entanglement in quantum dots via photon exchange , 1999, quant-ph/9906025.

[16]  M. Lipson,et al.  All-optical control of light on a silicon chip , 2004, Nature.

[17]  Shanhui Fan,et al.  Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency. , 2004, Physical review letters.

[18]  Hideo Mabuchi,et al.  Integration of fiber-coupled high-Q SiNx microdisks with atom chips , 2006, quant-ph/0605234.

[19]  T. Kaneko,et al.  Second-order filter response from parallel coupled glass microring resonators , 1999, IEEE Photonics Technology Letters.

[20]  Lukin,et al.  Entanglement of atomic ensembles by trapping correlated photon states , 2000, Physical review letters.

[21]  Michal Lipson,et al.  Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency. , 2006, Optics express.

[22]  Kirk A. Fuller,et al.  Coupled-Resonator-Induced Transparency , 2004 .

[23]  Andrew G. Glen,et al.  APPL , 2001 .

[24]  Z. Han,et al.  Quantum computation without strict strong coupling on a silicon chip (6 pages) , 2006 .

[25]  L. Hau,et al.  Nonlinear Optics at Low Light Levels , 1999 .

[26]  Xiao,et al.  Electromagnetically induced transparency in a three-level Lambda -type system in rubidium atoms. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[27]  Heinrich Kurz,et al.  Ultrahigh-quality-factor silicon-on-insulator microring resonator. , 2004, Optics letters.

[28]  H. J. Kimble,et al.  Optimal sizes of dielectric microspheres for cavity QED with strong coupling , 2003 .

[29]  S. Swain,et al.  Quantum interference in optical fields and atomic radiation , 2001, quant-ph/0109100.

[30]  Kouki Totsuka,et al.  Slow light in coupled-resonator-induced transparency. , 2007, Physical review letters.

[31]  Kerry J. Vahala,et al.  Fabrication and coupling to planar high-Q silica disk microcavities , 2003 .

[32]  Harris,et al.  Nonlinear optical processes using electromagnetically induced transparency. , 1990, Physical review letters.

[33]  Lin Zhu,et al.  Transmission and group delay of microring coupled-resonator optical waveguides. , 2006, Optics letters.

[34]  S. I. Shopova,et al.  Induced transparency and absorption in coupled whispering-gallery microresonators , 2005 .

[35]  Edo Waks,et al.  Dipole induced transparency in drop-filter cavity-waveguide systems. , 2006, Physical review letters.

[36]  Hailin Wang,et al.  Spin coherence and electromagnetically induced transparency via exciton correlations. , 2002, Physical review letters.

[37]  A. Sokolov,et al.  Raman generation by phased and antiphased molecular states. , 2000, Physical review letters.

[38]  J. Marangos Electromagnetically induced transparency , 1998 .

[39]  J. Marangos,et al.  Electromagnetically induced transparency : Optics in coherent media , 2005 .

[40]  M. Lukin,et al.  Controlling photons using electromagnetically induced transparency , 2001, Nature.

[41]  K. Vahala,et al.  Observation of strong coupling between one atom and a monolithic microresonator , 2006, Nature.