Electronic structure and transmission characteristics of SiGe nanowires

Atomistic disorder such as alloy disorder, surface roughness and inhomogeneous strain are known to influence electronic structure and charge transport. Scaling of device dimensions to the nanometer regime enhances the effects of disorder on device characteristics and the need for atomistic modeling arises. In this work SiGe alloy nanowires are studied from two different points of view: (1) Electronic structure where the bandstructure of a nanowire is obtained by projecting out small cell bands from a supercell eigenspectrum and (2) Transport where the transmission coefficient through the nanowire is computed using an atomistic wave function approach. The nearest neighbor sp3d5s* semi-empirical tight-binding model is employed for both electronic structure and transport. The connection between dispersions and transmission coefficients of SiGe random alloy nanowires of different sizes is highlighted. Localization is observed in thin disordered wires and a transition to bulk-like behavior is observed with increasing wire diameter.

[1]  Gerhard Klimeck,et al.  Atomistic Electronic Structure Calculations of Unstrained Alloyed Systems Consisting of a Million Atoms , 2008 .

[2]  Gerhard Klimeck,et al.  Effect of wetting layers on the strain and electronic structure of InAs self-assembled quantum dots , 2004 .

[3]  Mark S. Lundstrom,et al.  Theory of ballistic nanotransistors , 2003 .

[4]  A. E. Wetsel,et al.  Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure. , 1988, Physical review letters.

[5]  Gerhard Klimeck,et al.  Valley splitting in strained silicon quantum wells , 2003 .

[6]  G. Klimeck,et al.  Atomistic Simulation of Realistically Sized Nanodevices Using NEMO 3-D—Part II: Applications , 2007, IEEE Transactions on Electron Devices.

[7]  T. Boykin,et al.  Evolution time and energy uncertainty , 2007, European Journal of Physics.

[8]  K. Hinzer,et al.  Red-Emitting Semiconductor Quantum Dot Lasers , 1996, Science.

[9]  Gerhard Klimeck,et al.  Novel channel materials for ballistic nanoscale MOSFETs-bandstructure effects , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[10]  Mark S. Lundstrom,et al.  Bandstructure and Orientation Effects in Si and Ge Nanowire FETs , 2005 .

[11]  Gerhard Klimeck,et al.  On the Validity of the Parabolic Effective-Mass Approximation for the Current-Voltage Calculation of , 2005 .

[12]  Gerhard Klimeck,et al.  Practical application of zone-folding concepts in tight-binding calculations , 2005 .

[13]  Gerhard Klimeck,et al.  Valence band effective-mass expressions in the sp 3 d 5 s * empirical tight-binding model applied to a Si and Ge parametrization , 2004 .

[14]  P. Michler Single quantum dots : fundamentals, applications, and new concepts , 2003 .

[15]  Gerhard Klimeck,et al.  Electronic Structure of Si/InAs Composite Channels , 2007 .

[16]  Graf,et al.  Electromagnetic fields and dielectric response in empirical tight-binding theory. , 1995, Physical review. B, Condensed matter.

[18]  Dongyan Xu,et al.  Autonomic Live Adaptation of Virtual Computational Environments in a Multi-Domain Infrastructure , 2006, 2006 IEEE International Conference on Autonomic Computing.

[19]  Gerhard Klimeck,et al.  Electromagnetic coupling and gauge invariance in the empirical tight-binding method , 2001 .

[20]  Avik W. Ghosh,et al.  Theoretical investigation of surface roughness scattering in silicon nanowire transistors , 2005, cond-mat/0502538.

[21]  Mikhail V. Maximov,et al.  High-power continuous-wave operation of a InGaAs/AlGaAs quantum dot laser , 1998 .

[22]  Xifan Wu,et al.  Importance of second-order piezoelectric effects in zinc-blende semiconductors. , 2006, Physical review letters.

[23]  G. Klimeck,et al.  The Electronic Structure and Transmission Characteristics of Disordered AlGaAs Nanowires , 2007, IEEE Transactions on Nanotechnology.

[24]  P. Petroff,et al.  A quantum dot single-photon turnstile device. , 2000, Science.

[25]  Gerhard Klimeck,et al.  Performance evaluation of ballistic silicon nanowire transistors with atomic-basis dispersion relations , 2005 .

[26]  Moon-Ho Jo,et al.  Fabrication of Si1−xGex alloy nanowire field-effect transistors , 2007 .

[27]  Jing Wang,et al.  A three-dimensional quantum simulation of silicon nanowire transistors with the effective-mass approximation , 2004, cond-mat/0403739.

[28]  Charles M. Lieber,et al.  Growth and transport properties of complementary germanium nanowire field-effect transistors , 2004 .

[29]  G. Klimeck,et al.  Electronic properties of silicon nanowires , 2005, IEEE Transactions on Electron Devices.

[30]  Boundary conditions for the electronic structure of finite-extent embedded semiconductor nanostructures , 2003, cond-mat/0311461.

[31]  T. Boykin,et al.  Atomistic Simulation of Realistically Sized Nanodevices Using NEMO 3-D—Part I: Models and Benchmarks , 2007, IEEE Transactions on Electron Devices.

[32]  Gerhard Klimeck,et al.  Approximate bandstructures of semiconductor alloys from tight-binding supercell calculations , 2007, Journal of Physics: Condensed Matter.

[33]  Jean-Michel Gérard,et al.  Quantum Cascade of Photons in Semiconductor Quantum Dots , 2001 .

[34]  Peter Vogl,et al.  Dielectric response of molecules in empirical tight-binding theory , 2001 .

[35]  Gerhard Klimeck,et al.  Valley splitting in low-density quantum-confined heterostructures studied using tight-binding models , 2004 .

[36]  Gerhard Klimeck,et al.  Valley splitting in strained silicon quantum wells modeled with 2° miscuts, step disorder, and alloy disorder , 2007 .

[37]  M. Shur,et al.  Properties of advanced semiconductor materials : GaN, AlN, InN, BN, SiC, SiGe , 2001 .

[38]  H. Sakaki,et al.  Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .

[39]  C. Piermarocchi,et al.  Control of exciton dynamics in nanodots for quantum operations. , 2001, Physical review letters.

[40]  Lars Samuelson,et al.  Solid-phase diffusion mechanism for GaAs nanowire growth , 2004, Microscopy and Microanalysis.

[41]  M. Lundstrom,et al.  On the validity of the parabolic effective-mass approximation for the I-V calculation of silicon nanowire transistors , 2005, IEEE Transactions on Electron Devices.

[42]  Levente J. Klein,et al.  Spin-Based Quantum Dot Quantum Computing in Silicon , 2004, Quantum Inf. Process..

[43]  Gerhard Klimeck,et al.  Brillouin-zone Unfolding of Perfect Supercells Having Nonequivalent Primitive Cells Illustrated with a Si/Ge Tight-Binding parameterization , 2007 .

[44]  Gerhard Klimeck,et al.  Strain and electronic structure interactions in realistically‐scaled quantum dot stacks , 2007 .

[45]  Alex Zunger,et al.  Cylindrically shaped zinc-blende semiconductor quantum dots do not have cylindrical symmetry: Atomistic symmetry, atomic relaxation, and piezoelectric effects , 2005 .

[46]  P. N. Keating,et al.  Effect of Invariance Requirements on the Elastic Strain Energy of Crystals with Application to the Diamond Structure , 1966 .

[47]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[48]  Charles M. Lieber,et al.  Diameter-controlled synthesis of single-crystal silicon nanowires , 2001 .

[49]  W. Fichtner,et al.  Atomistic simulation of nanowires in the sp3d5s* tight-binding formalism: From boundary conditions to strain calculations , 2006 .

[50]  Gerhard Klimeck,et al.  Development of a Nanoelectronic 3-D (NEMO 3-D ) Simulator for Multimillion Atom Simulations and Its Application to Alloyed Quantum Dots , 2002 .