Device models for PZT/PT, BST/PT, SBT/PT, and SBT/BI ferroelectric memories

Abstract We have used x-ray photoelectron spectroscopy (XPS) and ultraviolet absorption measurements to determine unambiguous values of the electron affinities and band structure alignments for the three most popular ferroelectric memory materials (strontium bismuth tantalate SBT. lead zirconate-titanate PZT, and barium strontium titanate BST) on platinum electrodes. The PZT/Pt results and model disagree quantitatively and qualitatively with the earlier work of Wouters, Willems, and Maes [Microelectron. Eng. 29, 249 (1995)], who inferred an electron affinity of 2.6 eV, compared with our value of 3.5 eV. Nano-electrode fabrication is discussed for such memories, and nano-electrode interface models of SBT/Bi are included.

[1]  N. Zakharov,et al.  NANO-phase SBT-family ferroelectric memories , 1998 .

[2]  J. Scott,et al.  HIGH-DIELECTRIC CONSTANT THIN FILMS FOR DYNAMIC RANDOM ACCESS MEMORIES (DRAM) , 1998 .

[3]  C. Gutleben Band alignments of the platinum/SrBi2Ta2O9 interface , 1997 .

[4]  Robert E. Jones,et al.  Investigation of hydrogen induced changes in SrBi2Ta2O9 ferroelectric films , 1997 .

[5]  F. Ross,et al.  New results on layer-structure perovsktte ferroelectric thin-film memories , 1997 .

[6]  T. D. Hadnagy Materials and production characterization requirements for the production of FRAM® memory products , 1997 .

[7]  Masahiro Tanaka,et al.  Development of a new annealing process to allow new top electrode materials for SrBi2Ta2O9 capacitors , 1997 .

[8]  Ferroelectricity of heteroepitaxial Ba0.6Sr0.4TiO3 ultrathin films , 1997 .

[9]  R. Lamb,et al.  The bandgap of SrBi2Ta2O9 , 1997 .

[10]  M. Copel,et al.  Metallization induced band bending of SrTiO3(100) and Ba0.7Sr0.3TiO3 , 1997 .

[11]  T. Song,et al.  Characteristics of srbi2ta2o9 thin films fabricated by the r. f. magnetron sputtering technique , 1997 .

[12]  R. Zuleeg,et al.  Analysis of C-V and I-V data of BST thin films , 1997 .

[13]  Hidemi Takasu Integrated ferroelectrics as a strategic device , 1997 .

[14]  D. Wouters,et al.  Electrical conductivity in ferroelectric thin films , 1995 .

[15]  S. Dey,et al.  Electrical Properties of Paraelectric (Pb 0.72La 0.28)TiO3 Thin Films with High Linear Dielectric Permittivity: Schottky and Ohmic Contacts , 1995 .

[16]  R. Waser Polarization, Conduction, and Breakdown in Non-Ferroelectric Perovskite Thin Films , 1995 .

[17]  Masahiro Tanaka,et al.  Preparation and Properties of ferroelectric Bi 2 SrTa 2 O 9 thin films for FeRAM using Flash-MOCVD , 1995 .

[18]  James F. Scott,et al.  A model of voltage-dependent dielectric losses for ferroelectric MMIC devices , 1995 .

[19]  R. Waser,et al.  Science and technology of electroceramic thin films , 1995 .

[20]  S. Thurgate,et al.  Surface photovoltage studies of n-type and p-type InP , 1994 .

[21]  T. Roberts,et al.  Dielectric breakdown in high-ε films for ULSI DRAMs: II. barium-strontium titanate ceramics , 1994 .

[22]  J. Scott,et al.  Dielectric breakdown in high-ε films for ulsi DRAMs: III. Leakage current precursors and electrodes , 1995 .

[23]  Wuzong Zhou Structural chemistry and physical properties of some ternary oxides in the bi2o3ta2o5 system , 1992 .

[24]  S. Bhoraskar,et al.  Secondary electron emission of doped PZT ceramics , 1986 .

[25]  A. Morris,et al.  The flux system BaO/Bi2O3/B2O3 , 1972 .