Directional Compactly Supported Tensor Product Complex Tight Framelets with Applications to Image Denoising and Inpainting

Compactly supported tight framelets are of great interest and importance in both theory and application. In this paper we discuss how to construct directional compactly supported tensor product com...

[1]  Edward H. Adelson,et al.  Shiftable multiscale transforms , 1992, IEEE Trans. Inf. Theory.

[2]  Lixin Shen,et al.  Adaptive Inpainting Algorithm Based on DCT Induced Wavelet Regularization , 2013, IEEE Transactions on Image Processing.

[3]  D. Labate,et al.  Sparse Multidimensional Representations using Anisotropic Dilation and Shear Operators , 2006 .

[4]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[5]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[6]  Alessandro Foi,et al.  Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering , 2007, IEEE Transactions on Image Processing.

[7]  Eric P. Braverman,et al.  Image inpainting from partial noisy data by directional complex tight framelets , 2017 .

[8]  Bin Dong,et al.  MRA-based wavelet frames and applications , 2013 .

[9]  E. Candès,et al.  Ridgelets: a key to higher-dimensional intermittency? , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[10]  Gabriele Steidl,et al.  Convex multiclass segmentation with shearlet regularization , 2011, Int. J. Comput. Math..

[11]  Zhenpeng Zhao,et al.  Tensor Product Complex Tight Framelets with Increasing Directionality , 2013, SIAM J. Imaging Sci..

[12]  Wang-Q Lim,et al.  Nonseparable Shearlet Transform , 2013, IEEE Transactions on Image Processing.

[13]  Bin Han,et al.  Properties of Discrete Framelet Transforms , 2012 .

[14]  Marc Lebrun,et al.  An Analysis and Implementation of the BM3D Image Denoising Method , 2012, Image Process. Line.

[15]  Bin Han,et al.  Symmetric orthonormal complex wavelets with masks of arbitrarily high linear-phase moments and sum rules , 2010, Adv. Comput. Math..

[16]  Bin Han,et al.  Algorithm for constructing symmetric dual framelet filter banks , 2014, Math. Comput..

[17]  Zhenpeng Zhao,et al.  Compactly Supported Tensor Product Complex Tight Framelets with Directionality , 2013, SIAM J. Math. Anal..

[18]  B. Han,et al.  Smooth affine shear tight frames with MRA structure , 2013, 1308.6205.

[19]  C. Chui,et al.  Compactly supported tight and sibling frames with maximum vanishing moments , 2001 .

[20]  A. Ron,et al.  Affine Systems inL2(Rd): The Analysis of the Analysis Operator , 1997 .

[21]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[22]  Amara Lynn Graps,et al.  An introduction to wavelets , 1995 .

[23]  Wang-Q Lim,et al.  The Discrete Shearlet Transform: A New Directional Transform and Compactly Supported Shearlet Frames , 2010, IEEE Transactions on Image Processing.

[24]  Richard Baraniuk,et al.  The Dual-tree Complex Wavelet Transform , 2007 .

[25]  B. Han On Dual Wavelet Tight Frames , 1995 .

[26]  Emmanuel J. Candès,et al.  The curvelet transform for image denoising , 2002, IEEE Trans. Image Process..

[27]  Xiaosheng Zhuang,et al.  Digital Affine Shear Transforms: Fast Realization and Applications in Image/Video Processing , 2016, SIAM J. Imaging Sci..

[28]  B. Han,et al.  SYMMETRIC TIGHT FRAMELET FILTER BANKS WITH THREE HIGH-PASS FILTERS , 2013 .

[29]  B. Han Nonhomogeneous Wavelet Systems in High Dimensions , 2010, 1002.2421.

[30]  Wang-Q Lim,et al.  Wavelets with composite dilations , 2004 .

[31]  Xiaosheng Zhuang,et al.  Digital Affine Shear Filter Banks With 2-Layer Structure and Their Applications in Image Processing , 2017, IEEE Transactions on Image Processing.

[32]  Xiaosheng Zhuang,et al.  ShearLab: A Rational Design of a Digital Parabolic Scaling Algorithm , 2011, SIAM J. Imaging Sci..

[33]  I. Selesnick,et al.  Bivariate shrinkage with local variance estimation , 2002, IEEE Signal Processing Letters.

[34]  Bernhard G. Bodmann,et al.  Gabor Shearlets , 2013 .

[35]  N. Kingsbury Complex Wavelets for Shift Invariant Analysis and Filtering of Signals , 2001 .

[36]  Wang-Q Lim,et al.  ShearLab 3D , 2014, 1402.5670.

[37]  I. Daubechies,et al.  Framelets: MRA-based constructions of wavelet frames☆☆☆ , 2003 .

[38]  Gitta Kutyniok,et al.  Shearlets: Multiscale Analysis for Multivariate Data , 2012 .

[39]  Zuowei Shen Affine systems in L 2 ( IR d ) : the analysis of the analysis operator , 1995 .

[40]  D. Donoho,et al.  A RATIONAL DESIGN OF A DIGITAL SHEARLET TRANSFORM , 2010 .

[41]  Zhenpeng Zhao,et al.  Directional Tensor Product Complex Tight Framelets with Low Redundancy , 2014, ArXiv.

[42]  G. Easley,et al.  Sparse directional image representations using the discrete shearlet transform , 2008 .