Some Single- and Multiobjective Optimization Techniques

Several metaheuristic techniques optimizing both single and multiple objectives are described in detail in this chapter. Mathematical formulations of the single and multiobjective optimization problems are provided. Different concepts related to multiobjective optimization are described in detail. Two popular metaheuristics, namely genetic algorithms and simulated annealing, are elaborately discussed. Several existing multiobjective evolutionary techniques (MOEAs) are described in brief. Apart from MOEAs there exist several multiobjective simulated annealing (MOSA)-based techniques. These are also described in this chapter. Finally a detailed description of a multiobjective simulated annealing-based technique, AMOSA, is provided, along with an analysis of its time complexity. Comparative results with some existing MOEA and MOSA techniques are presented for several benchmark test problems.

[1]  Godfried T. Toussaint,et al.  PATTERN RECOGNITION AND GEOMETRICAL COMPLEXITY. , 1980 .

[2]  Hisao Ishibuchi,et al.  Incorporation of Scalarizing Fitness Functions into Evolutionary Multiobjective Optimization Algorithms , 2006, PPSN.

[3]  D Nam,et al.  Multiobjective simulated annealing: a comparative study to evolutionary algorithms , 2000 .

[4]  Andrzej Jaszkiewicz Comparison of local search-based metaheuristics on the multiple objective knapsack problem , 2001 .

[5]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[7]  T. Gal,et al.  Multicriteria Decision Making: Advances in MCDM Models, Algorithms, Theory, and Applications , 2012 .

[8]  Jonathan E. Fieldsend,et al.  Using unconstrained elite archives for multiobjective optimization , 2003, IEEE Trans. Evol. Comput..

[9]  Hisao Ishibuchi,et al.  A multi-objective genetic local search algorithm and its application to flowshop scheduling , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[10]  Hui Zhang,et al.  Image segmentation using evolutionary computation , 1999, IEEE Trans. Evol. Comput..

[11]  Paolo Serafini,et al.  Simulated Annealing for Multi Objective Optimization Problems , 1994 .

[12]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[13]  Jacques Teghem,et al.  A Particular Multiobjective Vehicle Routing Problem Solved by Simulated Annealing , 2004, Metaheuristics for Multiobjective Optimisation.

[14]  Sanghamitra Bandyopadhyay,et al.  Multiobjective GAs, quantitative indices, and pattern classification , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[15]  B. Suman Simulated annealing-based multiobjective algorithms and their application for system reliability , 2003 .

[16]  Lawrence Davis,et al.  Genetic Algorithms and Simulated Annealing , 1987 .

[17]  Jonathan E. Fieldsend,et al.  Dominance measures for multi-objective simulated annealing , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[18]  J. Dennis,et al.  A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems , 1997 .

[19]  Douglas H. Norrie,et al.  Agent-Based Systems for Intelligent Manufacturing: A State-of-the-Art Survey , 1999, Knowledge and Information Systems.

[20]  Xin Yao,et al.  A new simulated annealing algorithm , 1995, Int. J. Comput. Math..

[21]  Carlos A. Coello Coello,et al.  A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques , 1999, Knowledge and Information Systems.

[22]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[23]  Kenneth DeJong,et al.  Learning with genetic algorithms: An overview , 1988, Machine Learning.

[24]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.

[25]  Balram Suman,et al.  Study of self-stopping PDMOSA and performance measure in multiobjective optimization , 2005, Comput. Chem. Eng..

[26]  Ujjwal Maulik,et al.  Multiobjective Genetic Algorithms for Clustering - Applications in Data Mining and Bioinformatics , 2011 .

[27]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[28]  David W. Coit,et al.  Multi-objective optimization using genetic algorithms: A tutorial , 2006, Reliab. Eng. Syst. Saf..

[29]  Scott Kirkpatrick,et al.  Global Wiring by Simulated Annealing , 1983, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[30]  Chris Murphy,et al.  Dominance-Based Multiobjective Simulated Annealing , 2008, IEEE Transactions on Evolutionary Computation.

[31]  SANGHAMITRA BANDYOPADHYAY,et al.  Clustering Using Simulated Annealing with Probabilistic Redistribution , 2001, Int. J. Pattern Recognit. Artif. Intell..

[32]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[33]  Scott Kirkpatrick,et al.  Optimization by simulated annealing: Quantitative studies , 1984 .

[34]  Shaun Quegan,et al.  Quantitative comparison of the performance of SAR segmentation algorithms , 1998, IEEE Trans. Image Process..

[35]  Sanghamitra Bandyopadhyay,et al.  Simulated Annealing Based Pattern Classification , 1998, Inf. Sci..

[36]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[37]  Evan J. Hughes,et al.  Evolutionary many-objective optimisation: many once or one many? , 2005, 2005 IEEE Congress on Evolutionary Computation.

[38]  Andrzej Jaszkiewicz,et al.  Pareto Simulated Annealing for Fuzzy Multi-Objective Combinatorial Optimization , 2000, J. Heuristics.

[39]  K. Sohn,et al.  A mean field annealing approach to robust corner detection , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[40]  Ujjwal Maulik,et al.  SAFE: An Efficient Feature Extraction Technique , 2001, Knowledge and Information Systems.

[41]  Peter J. Fleming,et al.  Evolutionary Algorithms and Simulated Annealing for MCDM , 1999 .

[42]  Keith A. Seffen,et al.  A SIMULATED ANNEALING ALGORITHM FOR MULTIOBJECTIVE OPTIMIZATION , 2000 .

[43]  Günter Rudolph,et al.  Convergence analysis of canonical genetic algorithms , 1994, IEEE Trans. Neural Networks.

[44]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[45]  Hisao Ishibuchi,et al.  Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling , 2003, IEEE Trans. Evol. Comput..

[46]  B. Suman,et al.  A survey of simulated annealing as a tool for single and multiobjective optimization , 2006, J. Oper. Res. Soc..

[47]  H. Szu Fast simulated annealing , 1987 .

[48]  Ujjwal Maulik,et al.  A Simulated Annealing-Based Multiobjective Optimization Algorithm: AMOSA , 2008, IEEE Transactions on Evolutionary Computation.

[49]  Jeffrey Horn,et al.  Multi-objective optimal design of groundwater remediation systems: application of the niched Pareto genetic algorithm (NPGA) , 2002 .

[50]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[51]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[52]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[53]  Sanghamitra Bandyopadhyay,et al.  Classification and learning using genetic algorithms - applications in bioinformatics and web intelligence , 2007, Natural computing series.

[54]  Martin J. Oates,et al.  PESA-II: region-based selection in evolutionary multiobjective optimization , 2001 .

[55]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[56]  E. Sontag,et al.  Image restoration and segmentation using the annealing algorithm , 1985, 1985 24th IEEE Conference on Decision and Control.

[57]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[58]  E. L. Ulungu,et al.  MOSA method: a tool for solving multiobjective combinatorial optimization problems , 1999 .

[59]  El-Ghazali Talbi Metaheuristics for Multiobjective Optimization , 2009 .

[60]  Balram Suman,et al.  Multiobjective simulated annealing - a metaheuristic technique for multiobjective optimization of a constrained problem , 2002 .

[61]  I ScottKirkpatrick Optimization by Simulated Annealing: Quantitative Studies , 1984 .

[62]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[63]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[64]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[65]  John J. Grefenstette,et al.  Proceedings of the First International Conference on Genetic Algorithms and their Applications , 2014 .

[66]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[67]  Piotr Czyzżak,et al.  Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization , 1998 .

[68]  Balram Suman,et al.  Study of simulated annealing based algorithms for multiobjective optimization of a constrained problem , 2004, Comput. Chem. Eng..

[69]  Martin J. Oates,et al.  The Pareto Envelope-Based Selection Algorithm for Multi-objective Optimisation , 2000, PPSN.

[70]  L. Ingber Very fast simulated re-annealing , 1989 .

[71]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.