A new analytical approach to model and evaluate the performance of a class of irreversible fuel cells

[1]  S. Kaytakoğlu,et al.  Optimization of parametric performance of a PEMFC , 2007 .

[2]  Fortunato Migliardini,et al.  Performance investigation of 2.4 kW PEM fuel cell stack in vehicles , 2007 .

[3]  Srikanth Gopalan,et al.  Polarization measurements on single-step co-fired solid oxide fuel cells (SOFCs) , 2007 .

[4]  Xin-jian Zhu,et al.  Two-dimensional dynamic simulation of a direct internal reforming solid oxide fuel cell , 2007 .

[5]  Alessandra Perna,et al.  Hydrogen from ethanol: Theoretical optimization of a PEMFC system integrated with a steam reforming processor , 2007 .

[6]  S. Jack Hu,et al.  Harvesting of PEM fuel cell heat energy for a thermal engine in an underwater glider , 2007 .

[7]  Guilan Wang,et al.  3-D model of thermo-fluid and electrochemical for planar SOFC , 2007 .

[8]  Jeong L. Sohn,et al.  Some issues on performance analysis of fuel cells in thermodynamic point of view , 2007 .

[9]  D. Bedeaux Nonequilibrium Thermodynamics and Statistical Physics of Surfaces , 2007 .

[10]  Stefano Cordiner,et al.  Analysis of a SOFC energy generation system fuelled with biomass reformate , 2007 .

[11]  Thameur Aloui,et al.  Analytical modeling of polarizations in a solid oxide fuel cell using biomass syngas product as fuel , 2007 .

[12]  Abdellah El Moudni,et al.  Non-linear dynamic modeling of proton exchange membrane fuel cell , 2006 .

[13]  Francesco Calise,et al.  Simulation and exergy analysis of a hybrid Solid Oxide Fuel Cell (SOFC)–Gas Turbine System , 2006 .

[14]  Ying Liu,et al.  Estimation of contact resistance in proton exchange membrane fuel cells , 2006 .

[15]  Zuomin Dong,et al.  Optimization of a PEM fuel cell system based on empirical data and a generalized electrochemical semi-empirical model , 2006 .

[16]  Jin Jiang,et al.  An improved dynamic model considering effects of temperature and equivalent internal resistance for PEM fuel cell power modules , 2006 .

[17]  Yan Ji,et al.  Effects of transport scale on heat/mass transfer and performance optimization for solid oxide fuel cells , 2006 .

[18]  F. Calise,et al.  Design and partial load exergy analysis of hybrid SOFC–GT power plant , 2006 .

[19]  G. Naterer,et al.  Fuel cell entropy production with ohmic heating and diffusive polarization , 2006 .

[20]  N. Bonanos,et al.  Assessment of doped ceria as electrolyte , 2006 .

[21]  Dennis Y.C. Leung,et al.  An Electrochemical Model of a Solid Oxide Steam Electrolyzer for Hydrogen Production , 2006 .

[22]  D. A. Noren,et al.  Clarifying the Butler–Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models , 2005 .

[23]  Biao Huang,et al.  Dynamic modeling of solid oxide fuel cell: The effect of diffusion and inherent impedance , 2005 .

[24]  Alan S. Feitelberg,et al.  Operating line analysis of fuel processors for PEM fuel cell systems , 2005 .

[25]  M.H. Nehrir,et al.  Dynamic models and model validation for PEM fuel cells using electrical circuits , 2005, IEEE Transactions on Energy Conversion.

[26]  Paola Costamagna,et al.  Electrochemical model of the integrated planar solid oxide fuel cell (IP-SOFC) , 2004 .

[27]  Ashok Rao,et al.  Efficiency of electrochemical systems , 2004 .

[28]  Chang-Gi Kim,et al.  Numerical analysis of a polymer electrolyte fuel cell , 2004 .

[29]  Adrian Bejan,et al.  Thermodynamic optimization of internal structure in a fuel cell , 2004 .

[30]  Frank A. Coutelieris,et al.  Electricity from ethanol fed SOFCs: the expectations for sustainable development and technological benefits , 2004 .

[31]  R. Kee,et al.  A general mathematical model for analyzing the performance of fuel-cell membrane-electrode assemblies , 2003 .

[32]  Andrew E. Lutz,et al.  Thermodynamic comparison of fuel cells to the Carnot cycle , 2002 .

[33]  S. Chan,et al.  Polarization effects in electrolyte/electrode-supported solid oxide fuel cells , 2002 .

[34]  Panagiotis Tsiakaras,et al.  Thermodynamic analysis of a hydrogen fed solid oxide fuel cell based on a proton conductor , 2001 .

[35]  S. Chan,et al.  A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness , 2001 .

[36]  Paola Costamagna,et al.  Modeling of Solid Oxide Heat Exchanger Integrated Stacks and Simulation at High Fuel Utilization , 1998 .

[37]  F. Barbir,et al.  Efficiency and economics of proton exchange membrane (PEM) fuel cells , 1997 .

[38]  Dick Bedeaux,et al.  Jumps in electric potential and in temperature at the electrode surfaces of the solid oxide fuel cell , 1997 .

[39]  C. A. Ward,et al.  Analytical method for determining the internal resistance and electrocatalyst utilization of fuel cells , 1997 .

[40]  D. Bedeaux,et al.  Non-equilibrium electro-thermodynamics of polarizable multicomponent fluids with an interface , 1987 .

[41]  Stanley J. Watowich,et al.  Optimal current paths for model electrochemical systems , 1986 .

[42]  D. Bedeaux,et al.  Irreversible thermodynamics—a tool to describe phase transitions far from global equilibrium , 2004 .

[43]  S. Chan,et al.  Energy and exergy analysis of simple solid-oxide fuel-cell power systems , 2002 .

[44]  James Larminie,et al.  Fuel Cell Systems Explained , 2000 .

[45]  F. R. Foulkes,et al.  Fuel Cell Handbook , 1989 .

[46]  P. Mazur,et al.  Boundary conditions and non-equilibrium thermodynamics , 1976 .

[47]  I. Barin,et al.  Thermochemical properties of inorganic substances , 1973 .