The Kupershmidt hydrodynamic chains and lattices

This paper is devoted to the very important class of hydrodynamic chains (see [9], [23], [24]) first derived by B. Kupershmidt in [14], later re-discovered by M. Blaszak in [4] (see also [21]). An infinite set of local Hamiltonian structures, hydrodynamic reductions parameterized by the hypergeometric function and reciprocal transformations for the Kupershmidt hydrodynamic chains are described. In honour of Boris Kupershmidt

[1]  B. Kupershmidt Hydrodynamical chains of Pavlov class , 2006 .

[2]  M. Pavlov Explicit solutions of the WDVV equation determined by the "flat" hydrodynamic reductions of the Egorov hydrodynamic chains , 2006, nlin/0606008.

[3]  M. Pavlov Algebro-Geometric Approach in the Theory of Integrable Hydrodynamic Type Systems , 2006, nlin/0603054.

[4]  M. Pavlov The Hamiltonian approach in classification and integrability of hydrodynamic chains , 2006, nlin/0603057.

[5]  M. Pavlov Classification of integrable hydrodynamic chains and generating functions of conservation laws , 2006, nlin/0603055.

[6]  M. Pavlov Hydrodynamic chains and the classification of their Poisson brackets , 2006, nlin/0603056.

[7]  B. Kupershmidt Extensions of 1-Dimensional Polytropic Gas Dynamics , 2006 .

[8]  Blazej M. Szablikowski,et al.  Meromorphic Lax representations of (1+1)-dimensional multi-Hamiltonian dispersionless systems , 2005, nlin/0510068.

[9]  Blazej M. Szablikowski Gauge Transformation and Reciprocal Link for (2+1)-Dimensional Integrable Field Systems , 2005, nlin/0509034.

[10]  E. Ferapontov,et al.  Differential-geometric approach to the integrability of hydrodynamic chains: the Haantjes tensor , 2005, nlin/0505013.

[11]  B. Kupershmidt Equations Of Long Waves With A Free Surface III. The Multidimensional Case , 2005 .

[12]  Manuel Mañas S-functions, reductions and hodograph solutions of the rth dispersionless modified KP and Dym hierarchies , 2004, nlin/0405028.

[13]  Manuel Mañas On therth dispersionless Toda hierarchy: factorization problem, additional symmetries and some solutions , 2004, Journal of Physics A: Mathematical and General.

[14]  L. V. Bogdanov,et al.  Symmetry constraints for dispersionless integrable equations and systems of hydrodynamic type , 2003, nlin/0312013.

[15]  Z. Popowicz,et al.  Non polynomial conservation law densities generated by the symmetry operators in some hydrodynamical models , 2003, nlin/0303067.

[16]  Maxim V. Pavlov,et al.  Integrable hydrodynamic chains , 2003, nlin/0301010.

[17]  Manuel Mañas,et al.  Reductions of the Dispersionless KP Hierarchy , 2002 .

[18]  Blazej M. Szablikowski,et al.  Classical R-matrix theory of dispersionless systems: II. (2 + 1) dimension theory , 2002, nlin/0211018.

[19]  M. Błaszak Classical R-matrices on Poisson algebras and related dispersionless systems , 2002 .

[20]  B. Konopelchenko,et al.  Quasiconformal Mappings and Solutions of the Dispersionless KP Hierarchy , 2002, nlin/0202013.

[21]  L. Alonso,et al.  Energy-dependent potentials revisited: a universal hierarchy of hydrodynamic type , 2002, nlin/0202008.

[22]  Maxim V.Pavlov Integrable Systems and Metrics of Constant Curvature , 2001, nlin/0111013.

[23]  Lei Yu Waterbag reductions of the dispersionless discrete KP hierarchy , 2000 .

[24]  S. Novikov,et al.  On the local systems Hamiltonian in the weakly non-local Poission brackets , 2000, nlin/0006030.

[25]  J. Gibbons,et al.  The initial value problem for reductions of the Benney equations , 2000 .

[26]  J. Gibbons,et al.  Conformal maps and reductions of the Benney equations , 1999 .

[27]  J. Gibbons,et al.  REDUCTIONS OF THE BENNEY EQUATIONS , 1996 .

[28]  I. Krichever The τ‐function of the universal whitham hierarchy, matrix models and topological field theories , 1994 .

[29]  Irene Dorfman,et al.  Dirac Structures and Integrability of Nonlinear Evolution Equations , 1993 .

[30]  S. P. Tsarëv THE GEOMETRY OF HAMILTONIAN SYSTEMS OF HYDRODYNAMIC TYPE. THE GENERALIZED HODOGRAPH METHOD , 1991 .

[31]  E. Ferapontov,et al.  COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY: Non-local Hamiltonian operators of hydrodynamic type related to metrics of constant curvature , 1990 .

[32]  B. Dubrovin,et al.  Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory , 1989 .

[33]  A. Chigogidze The theory of n-shapes , 1989 .

[34]  Igor Krichever,et al.  Spectral theory of two-dimensional periodic operators and its applications , 1989 .

[35]  Y. Kodama A method for solving the dispersionless KP equation and its exact solutions , 1988 .

[36]  Y. Nutku On a new class of completely integrable nonlinear wave equations. II. Multi‐Hamiltonian structure , 1987 .

[37]  Y. Nutku On a new class of completely integrable nonlinear wave equations. I. Infinitely many conservation laws , 1985 .

[38]  N. N. Yanenko,et al.  Systems of Quasilinear Equations and Their Applications to Gas Dynamics , 1983 .

[39]  John Gibbons,et al.  Collisionless Boltzmann equations and integrable moment equations , 1981 .

[40]  V. Zakharov On the Benney equations , 1981 .

[41]  Vladimir E. Zakharov,et al.  Benney equations and quasiclassical approximation in the method of the inverse problem , 1980 .

[42]  Y. Manin,et al.  Conservation laws and Lax representation of Benney's long wave equations , 1979 .

[43]  D. Lebedev Benney's long waves equations: Hamiltonian form alism , 1979 .

[44]  D. J. Benney Some Properties of Long Nonlinear Waves , 1973 .

[45]  L. Yu The initial value problem for reductions of the Benney equations , 2006 .

[46]  M. Pavlov Classifying Integrable Egoroff Hydrodynamic Chains , 2004 .

[47]  M. Pavlov,et al.  Tri-Hamiltonian Structures of Egorov Systems of Hydrodynamic Type , 2003 .

[48]  A. Aksenov Symmetries and relations between solutions of the class Euler-Poisson-Darboux equations , 2001 .

[49]  I. Krichever The dispersionless Lax equations and topological minimal models , 1992 .

[50]  Igor Krichever,et al.  Method of averaging for two-dimensional "integrable" equations , 1988 .

[51]  B. Dubrovin,et al.  Hamiltonian formalism of one-dimensional systems of hydrodynamic type , 1983 .

[52]  B. Dubrovin,et al.  The Hamiltonian formalism of one-dimensional systems of hydrodynamic type and the Bogoliubov-Whitham averaging method , 1983 .

[53]  Y. Manin,et al.  Equations of long waves with a free surface. II. Hamiltonian structure and higher equations , 1978 .

[54]  Y. Manin,et al.  Long-wave equation with free boundaries. I. Conservation laws and solution , 1977 .

[55]  E.H.B. Bartelink Näherungsmethode zur berechnung deraustrittsarbeit von electronen aus metallen , 1936 .