Fundamental issues in wafer bonding

Semiconductor wafer bonding has increasingly become a technology of choice for materials integration in microelectronics, optoelectronics, and microelectromechanical systems. The present overview concentrates on some basic issues associated with wafer bonding such as the reactions at the bonding interface during hydrophobic and hydrophilic wafer bonding, as well as during ultrahigh vacuum bonding. Mechanisms of hydrogen-implantation induced layer splitting (“smart-cut” and “smarter-cut” approaches) are also considered. Finally, recent developments in the area of so-called “compliant universal substrates” based on twist wafer bonding are discussed.

[1]  Roland Scholz,et al.  “Compliant” twist-bonded GaAs substrates: The potential role of pinholes , 1999 .

[2]  U. Gösele,et al.  Low Vacuum Wafer Bonding , 1999 .

[3]  T. E. Haynes,et al.  Mechanism of silicon exfoliation induced by hydrogen/helium co-implantation , 1998 .

[4]  U. Gösele,et al.  Low temperature silicon direct bonding for application in micromechanics : bonding energies for different combinations of oxides , 1998 .

[5]  April S. Brown,et al.  Compliant substrate technology: Status and prospects , 1998 .

[6]  M. Schmidt Wafer-to-wafer bonding for microstructure formation , 1998, Proc. IEEE.

[7]  Tadatomo Suga,et al.  1.3 μm InGaAsP/InP lasers on GaAs substrate fabricated by the surface activated wafer bonding method at room temperature , 1998 .

[8]  S. Senz,et al.  Materials integration of gallium arsenide and silicon by wafer bonding , 1998 .

[9]  Fritz J. Kub,et al.  Characterization of Si pn junctions fabricated by direct wafer bonding in ultra-high vacuum , 1998 .

[10]  Y.-L. Chao,et al.  A “smarter-cut” approach to low temperature silicon layer transfer , 1998 .

[11]  P. Lambeck,et al.  Present and future role of chemical mechanical polishing in wafer bonding , 1998 .

[12]  Felix Ejeckam,et al.  Growth of InGaAs multi-quantum wells at 1.3 μm wavelength on GaAs compliant substrates , 1998 .

[13]  Bernard Aspar,et al.  Transfer of 3 in GaAs film on silicon substrate by proton implantation process , 1998 .

[14]  U. Gösele,et al.  A model of strain relaxation in hetero-epitaxial films on compliant substrates , 1998 .

[15]  U. Gösele,et al.  Molecular dynamics modelling of silicon wafer bonding , 1997 .

[16]  Felix Ejeckam,et al.  Dislocation-free InSb grown on GaAs compliant universal substrates , 1997 .

[17]  S. Bengtsson,et al.  Formation of directly bonded Si/Si interfaces in ultra-high vacuum , 1997 .

[18]  Felix Ejeckam,et al.  Wafer bonding technology and its applications in optoelectronic devices and materials , 1997 .

[19]  K. Uomi,et al.  Direct wafer bonding of III-V compound semiconductors for free-material and free-orientation integration , 1997 .

[20]  J. Bowers,et al.  Wafer Fusion for Surface-Normal Optoelectronic Device Applications , 1997 .

[21]  S. Senz,et al.  Wafer bonding of gallium arsenide on sapphire , 1997 .

[22]  M. Bruel,et al.  Smart-Cut: A New Silicon On Insulator Material Technology Based on Hydrogen Implantation and Wafer Bonding*1 , 1997 .

[23]  S. Hopfe,et al.  Layer splitting process in hydrogen-implanted Si, Ge, SiC, and diamond substrates , 1997 .

[24]  Felix Ejeckam,et al.  Lattice engineered compliant substrate for defect-free heteroepitaxial growth , 1997 .

[25]  R. Schlögl,et al.  Analysis of Bonding‐Related Gas Enclosure in Micromachined Cavities Sealed by Silicon Wafer Bonding , 1997 .

[26]  Y. Qian,et al.  Wafer bonding technology and its optoelectronic applications , 1997, Photonics West.

[27]  D. Hamann,et al.  Infrared spectroscopy as a probe of fundamental processes in microelectronics : silicon wafer cleaning and bonding , 1996 .

[28]  S. Bengtsson,et al.  The influence of wafer dimensions on the contact wave velocity in silicon wafer bonding , 1996 .

[29]  U. Gösele,et al.  Gas development at the interface of directly bonded silicon wafers: investigation on silicon-based pressure sensors , 1996 .

[30]  L. B. Freund,et al.  A critical thickness condition for a strained compliant substrate/epitaxial film system , 1996 .

[31]  D. Hamann,et al.  Physics and chemistry of silicon wafer bonding investigated by infrared absorption spectroscopy , 1996 .

[32]  L. Di Cioccio,et al.  Silicon carbide on insulator formation using the Smart Cut process , 1996 .

[33]  Kurt Scheerschmidt,et al.  Self‐propagating room‐temperature silicon wafer bonding in ultrahigh vacuum , 1995 .

[34]  U. Gösele,et al.  Thickness Considerations in Direct Silicon Wafer Bonding , 1995 .

[35]  B. Roberds,et al.  Chemical Free Room Temperature Wafer To Wafer Direct Bonding , 1995 .

[36]  M. Reiche,et al.  What determines the lateral bonding speed in silicon wafer bonding , 1995 .

[37]  M. Bruel Silicon on insulator material technology , 1995 .

[38]  Yves J. Chabal,et al.  Characterization of silicon surfaces and interfaces by optical vibrational spectroscopy , 1995 .

[39]  J. J. Dudley,et al.  Double‐fused 1.52‐μm vertical‐cavity lasers , 1995 .

[40]  U. Gösele,et al.  Semiconductor wafer bonding: recent developments , 1994 .

[41]  J. Haisma,et al.  Diversity and feasibility of direct bonding: a survey of a dedicated optical technology. , 1994, Applied optics.

[42]  Manfred Reiche,et al.  Hydrophobic silicon wafer bonding , 1994 .

[43]  Robert L. Byer,et al.  Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser , 1993 .

[44]  Analysis of wafer fusing for 1.3 μm vertical cavity surface emitting lasers , 1993 .

[45]  Werner Langheinrich,et al.  Application of oxygen plasma processing to silicon direct bonding , 1993 .

[46]  Y. Bäcklund,et al.  Spontaneous bonding of hydrophobic silicon surfaces , 1993 .

[47]  Y. Lo,et al.  Dynamic model for pseudomorphic structures grown on compliant substrates: An approach to extend the critical thickness , 1993 .

[48]  C. Harendt,et al.  Silicon fusion bonding and its characterization , 1992 .

[49]  Stefan Bengstsson Semiconductor wafer bonding: a review of interfacial properties and applications , 1992 .

[50]  U. Gösele,et al.  Wafer bonding technology for silicon-on-lnsulator applications: A review , 1992 .

[51]  W. Maszara Silicon‐On‐Insulator by Wafer Bonding: A Review , 1991 .

[52]  U. Gösele,et al.  Semiconductor wafer bonding , 1998 .

[53]  Phillip W. Barth,et al.  Silicon fusion bonding for fabrication of sensors, actuators and microstructures , 1990 .

[54]  D. E. Mull,et al.  Wafer fusion: A novel technique for optoelectronic device fabrication and monolithic integration , 1990 .

[55]  J. Haisma,et al.  Silicon-on-Insulator Wafer Bonding-Wafer Thinning Technological Evaluations , 1989 .

[56]  R. Flagmeyer,et al.  A comparative study of swelling, strain and radiation damage of high-energy proton-bombarded GaAs, GaP, InP, Si and Ge single crystals , 1989 .

[57]  U. Gosele,et al.  Bubble-Free Silicon Wafer Bonding in a Non-Cleanroom Environment , 1988 .

[58]  W. Maszara,et al.  Bonding of silicon wafers for silicon‐on‐insulator , 1988 .

[59]  M. Shimbo,et al.  Silicon‐to‐silicon direct bonding method , 1986 .

[60]  J. Lasky Wafer bonding for silicon‐on‐insulator technologies , 1986 .

[61]  E. Pippel,et al.  Substrate deformation and thin film growth , 1984 .

[62]  G. A. Antypas,et al.  Glass-sealed GaAs-AlGaAs transmission photocathode , 1975 .

[63]  H. De Lang,et al.  A small and stable continuous gas laser , 1962 .

[64]  Lord Rayleigh A Study of Glass Surfaces in Optical Contact , 1936 .