Plasma-Based Intelligent Reflective Surfaces for Beam Steering Operations

Plasma-based Intelligent Reflective Surfaces (IRSs) have been recently proposed to control the environment between transmitting and receiving antennas. This work demonstrates the feasibility of a plasma-based IRS that enables beam-steering operations. First, a theoretical model has been developed to assess the use of plasma as a reflector for a generic angle between the incident wave and the broadside direction. Subsequently, a numerical design is proposed to align the main radiation lobe with the broadside direction, provided that the incidence angle is 20 deg. To this end, continuous control of the plasma density, and in turn of the reflection coefficient, is implemented.

[1]  P. Rocca,et al.  Design of a Hybrid Metal-Plasma Transmit-Array With Beam-Scanning Capabilities , 2022, IEEE Transactions on Plasma Science.

[2]  M. Lavagna,et al.  Semi-Analytical Model of a Helicon Plasma Thruster , 2022, IEEE Transactions on Plasma Science.

[3]  J. Maxwell,et al.  Electromagnetic Waves , 2020, Fundamentals of Physics II.

[4]  Ibrahim A. Hemadeh,et al.  Survey on reconfigurable intelligent surfaces below 10 GHz , 2021, EURASIP J. Wirel. Commun. Netw..

[5]  A. Capobianco,et al.  Experimental Characterization of a Plasma Dipole in the UHF Band , 2021, IEEE Antennas and Wireless Propagation Letters.

[6]  E. Majorana,et al.  Development of a lumping methodology for the analysis of the excited states in plasma discharges operated with argon, neon, krypton, and xenon , 2021, Physics of Plasmas.

[7]  N. Bellomo,et al.  Design and In-orbit Demonstration of REGULUS, an Iodine electric propulsion system , 2021, CEAS Space Journal.

[8]  A. Capobianco,et al.  Numerical Suite for Gaseous Plasma Antennas Simulation , 2021, IEEE Transactions on Plasma Science.

[9]  T. Anderson Plasma Antennas , 2020, Selected Topics in Plasma Physics.

[10]  Cristian Dobranszki,et al.  Characterisation of a thermionic plasma source apparatus for high-density gaseous plasma antenna applications , 2020, Plasma Sources Science and Technology.

[11]  N. Al-Dhahir,et al.  Reconfigurable Intelligent Surfaces: Principles and Opportunities , 2020, IEEE Communications Surveys & Tutorials.

[12]  Changsheng You,et al.  Intelligent Reflecting Surface-Aided Wireless Communications: A Tutorial , 2020, IEEE Transactions on Communications.

[13]  Mohamed-Slim Alouini,et al.  Smart Radio Environments Empowered by Reconfigurable Intelligent Surfaces: How it Works, State of Research, and Road Ahead , 2020, ArXiv.

[14]  Paolo Rocca,et al.  Modeling and design of a plasma-based transmit-array with beam scanning capabilities , 2020, Results in Physics.

[15]  Mohamed-Slim Alouini,et al.  Wireless Communications Through Reconfigurable Intelligent Surfaces , 2019, IEEE Access.

[16]  Rui Zhang,et al.  Towards Smart and Reconfigurable Environment: Intelligent Reflecting Surface Aided Wireless Network , 2019, IEEE Communications Magazine.

[17]  Qingqing Wu,et al.  Beamforming Optimization for Intelligent Reflecting Surface with Discrete Phase Shifts , 2018, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[18]  A. Capobianco,et al.  Beam‐forming capabilities of a plasma circular reflector antenna , 2018, IET Microwaves, Antennas & Propagation.

[19]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[20]  E. Moreau,et al.  The 2017 Plasma Roadmap: Low temperature plasma science and technology , 2017 .

[21]  Fredrik Rusek,et al.  Beyond Massive MIMO: The Potential of Positioning With Large Intelligent Surfaces , 2017, IEEE Transactions on Signal Processing.

[22]  O. Sakai,et al.  Radiation characteristics of input power from surface wave sustained plasma antenna , 2016 .

[23]  M. T. Noghani,et al.  Experimental study on the surface wave driven plasma antenna , 2016 .

[24]  Zhi Sun,et al.  Increasing indoor spectrum sharing capacity using smart reflect-array , 2015, 2016 IEEE International Conference on Communications (ICC).

[25]  Saber Helmy Zainud-Deen,et al.  Dual-Mode Plasma Reflectarray/ Transmitarray Antennas , 2015, IEEE Transactions on Plasma Science.

[26]  Qiang Cheng,et al.  Coding metamaterials, digital metamaterials and programmable metamaterials , 2014, Light: Science & Applications.

[27]  J. A. Encinar,et al.  X-Band Reflectarray Antenna With Switching-Beam Using PIN Diodes and Gathered Elements , 2012, IEEE Transactions on Antennas and Propagation.

[28]  A. E. Martynyuk,et al.  Reconfigurable Reflectarrays Based on Optimized Spiraphase-Type Elements , 2012, IEEE Transactions on Antennas and Propagation.

[29]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing: Lieberman/Plasma 2e , 2005 .

[30]  L. Schenato,et al.  Feasibility of a Plasma-Based Intelligent Reflective Surface , 2022, IEEE Access.

[31]  Antonio-Daniele Capobianco,et al.  Feasibility study of a novel class of plasma antennas for SatCom navigation systems , 2021 .

[32]  W. Marsden I and J , 2012 .

[33]  J. Bittencourt Fundamentals of plasma physics , 1986 .

[34]  Bradley Dirks,et al.  The minimal exponent and k-rationality for local complete intersections , 2022, Journal de l’École polytechnique — Mathématiques.