Approximating Layout Problems on Random Geometric Graphs

In this paper, we study the approximability of several layout problems on a family of random geometric graphs. Vertices of random geometric graphs are randomly distributed on the unit square and are connected by edges whenever they are closer than some given parameter. The layout problems that we consider are bandwidth, minimum linear arrangement, minimum cut width, minimum sum cut, vertex separation, and edge bisection. We first prove that some of these problems remain NP-complete even for geometric graphs. Afterwards, we compute lower bounds that hold, almost surely, for random geometric graphs. Then, we present two heuristics that, almost surely, turn out to be constant approximation algorithms for our layout problems on random geometric graphs. In fact, for the bandwidth and vertex separation problems, these heuristics are asymptotically optimal. Finally, we use the theoretical results in order to empirically compare these and other well-known heuristics.

[1]  J. Yukich Probability theory of classical Euclidean optimization problems , 1998 .

[2]  Maria J. Serna,et al.  Random Geometric Problems on [0, 1]² , 1998, RANDOM.

[3]  Frank Thomson Leighton Introduction to parallel algorithms and architectures: arrays , 1992 .

[4]  Norman E. Gibbs,et al.  The bandwidth problem for graphs and matrices - a survey , 1982, J. Graph Theory.

[5]  Jonathan W. Berry,et al.  Path Optimization for Graph Partitioning Problems , 1999, Discret. Appl. Math..

[6]  Mihalis Yannakakis,et al.  A polynomial algorithm for the MIN CUT linear arrangement of trees , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[7]  Leslie G. Valiant,et al.  Universality considerations in VLSI circuits , 1981, IEEE Transactions on Computers.

[8]  Maria J. Serna,et al.  Layout Problems on Lattice Graphs , 1999, COCOON.

[9]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[10]  Fillia Makedon,et al.  Approximation Algorithms for the Bandwidth Minimization Problem for a Large Class of Trees , 1991, ICCI.

[11]  Marek Karpinski,et al.  An Approximation Algorithm for the Bandwidth Problem on Dense Graphs , 1997, Electron. Colloquium Comput. Complex..

[12]  Farhad Shahrokhi,et al.  Applications of the crossing number , 1994, SCG '94.

[13]  R. Durbin,et al.  Optimal numberings of an N N array , 1986 .

[14]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[15]  Charles J. Colbourn,et al.  Unit disk graphs , 1991, Discret. Math..

[16]  Marek Karpinski,et al.  On Approximation Intractability of the Bandwidth Problem , 1997, Electron. Colloquium Comput. Complex..

[17]  T. Ohtsuki,et al.  Layout design and verification , 1986 .

[18]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[19]  Rodrigo A. Botafogo Cluster analysis for hypertext systems , 1993, SIGIR.

[20]  Bojan Mohar,et al.  Optimal linear labelings and eigenvalues of graphs , 1992, Discret. Appl. Math..

[21]  Richard M. Karp,et al.  Mapping the genome: some combinatorial problems arising in molecular biology , 1993, STOC.

[22]  Donald L. Adolphson,et al.  Single Machine Job Sequencing with Precedence Constraints , 1977, SIAM J. Comput..

[23]  J. Beardwood,et al.  The shortest path through many points , 1959, Mathematical Proceedings of the Cambridge Philosophical Society.

[24]  Ralf Diekmann,et al.  The PARTY Partitioning Library User Guide - Version 1.1 , 1996 .

[25]  Satish Rao,et al.  New approximation techniques for some ordering problems , 1998, SODA '98.

[26]  Mathew D. Penrose,et al.  Vertex ordering and partitioning problems for random spatial graphs , 2000 .

[27]  Christos H. Papadimitriou,et al.  The bisection width of grid graphs , 1990, SODA '90.

[28]  Marek Karpinski,et al.  On Approximation Hardness of the Bandwidth Problem , 1997, Electron. Colloquium Comput. Complex..

[29]  Josep Díaz Cort,et al.  Random geometric problems on $[0,1]^2$ , 1998 .

[30]  Alan M. Frieze,et al.  A new rounding procedure for the assignment problem with applications to dense graph arrangement problems , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[31]  Andrew M. Peck,et al.  Partitioning Planar Graphs , 1992, SIAM J. Comput..

[32]  Jordi Petit Silvestre,et al.  Approximation heuristics and benchmarkings for the MinLA problem , 1997 .

[33]  B. Monien The bandwidth minimization problem for caterpillars with hair length 3 is NP-complete , 1986 .

[34]  Ivan Hal Sudborough,et al.  The Vertex Separation and Search Number of a Graph , 1994, Inf. Comput..

[35]  Richard M. Karp,et al.  Probabilistic Analysis of Partitioning Algorithms for the Traveling-Salesman Problem in the Plane , 1977, Math. Oper. Res..

[36]  Jordi Petit Silvestre Combining spectral sequencing with simulated annealing for the MinLA problem: sequential and parallel heuristics , 1997 .

[37]  Ravi B. Boppana,et al.  Eigenvalues and graph bisection: An average-case analysis , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[38]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[39]  Jordi Petit Silvestre,et al.  Approximating layout problems on random sparse graphs , 1998 .

[40]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[41]  L. H. Harper Optimal numberings and isoperimetric problems on graphs , 1966 .

[42]  D. Adolphson Optimal linear-ordering. , 1973 .

[43]  M. Ledoux,et al.  Isoperimetry and Gaussian analysis , 1996 .

[44]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[45]  Frank Thomson Leighton,et al.  A Framework for Solving VLSI Graph Layout Problems , 1983, J. Comput. Syst. Sci..

[46]  M. J. Appel,et al.  The connectivity of a graph on uniform points on [0,1]d , 2002 .

[47]  Maria J. Serna,et al.  Convergence Theorems for Some Layout Measures on Random Lattice and Random Geometric Graphs , 2000, Combinatorics, Probability and Computing.

[48]  J. Steele Probability theory and combinatorial optimization , 1987 .

[49]  Yossi Shiloach,et al.  A Minimum Linear Arrangement Algorithm for Undirected Trees , 1979, SIAM J. Comput..

[50]  R. Ravi,et al.  Ordering Problems Approximated: Single-Processor Scheduling and Interval Graph Completion , 1991, ICALP.

[51]  Paul G. Spirakis,et al.  Paradigms for Fast Parallel Approximability , 1997 .

[52]  Peter Dankelmann,et al.  On Path-Tough Graphs , 1994, SIAM J. Discret. Math..

[53]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning , 1989, Oper. Res..

[54]  Satish Rao,et al.  Finding near-optimal cuts: an empirical evaluation , 1993, SODA '93.

[55]  David R. Karger,et al.  A randomized fully polynomial time approximation scheme for the all terminal network reliability problem , 1995, STOC '95.

[56]  Brian W. Kernighan,et al.  An efficient heuristic procedure for partitioning graphs , 1970, Bell Syst. Tech. J..

[57]  Reinhard Lüling,et al.  Combining Helpful Sets and Parallel Simulated Annealing for the Graph-partitioning Problem , 1996, Parallel Algorithms Appl..

[58]  David G. Kirkpatrick,et al.  Algorithmic aspects of constrained unit disk graphs , 1996 .

[59]  David G. Kirkpatrick,et al.  Unit disk graph recognition is NP-hard , 1998, Comput. Geom..

[60]  D. Kendall Incidence matrices, interval graphs and seriation in archeology. , 1969 .

[61]  Jacobo Torán,et al.  The MINSUMCUT Problem , 1991, WADS.

[62]  Paul G. Spirakis,et al.  Parallel Algorithms for the Minimum Cut and the Minimum Length Tree Layout Problems , 1997, Theor. Comput. Sci..

[63]  Kai Lai Chung,et al.  A Course in Probability Theory , 1949 .

[64]  Bruce Hendrickson,et al.  The Chaco user`s guide. Version 1.0 , 1993 .

[65]  Harry B. Hunt,et al.  NC-Approximation Schemes for NP- and PSPACE-Hard Problems for Geometric Graphs , 1998, J. Algorithms.

[66]  Fillia Makedon,et al.  On minimizing width in linear layouts , 1989, Discret. Appl. Math..

[67]  Ivan Hal Sudborough,et al.  Min Cut is NP-Complete for Edge Weigthed Trees , 1986, ICALP.

[68]  David S. Johnson,et al.  COMPLEXITY RESULTS FOR BANDWIDTH MINIMIZATION , 1978 .