Funnel control in mechatronics: An overview

This overview presents a simple high-gain adaptive controller — the funnel controller — and its possible applications in mechatronics. The funnel controller neither identifies nor estimates the system under control and is applicable for (nonlinear) systems being minimum-phase (or having stable zero-dynamics in the nonlinear case), having relative degree one or two and known sign of the high-frequency gain. So only “structural system properties” must be satisfied to allow for controller implementation. Moreover, control performance is robust to parameter uncertainties or variations not affecting the system structure. The proportional funnel controller assures tracking of time-varying reference signals with prescribed transient accuracy, i.e. the tracking error evolves within a “funnel” with prescribed boundary (i.e. a continuous function of time chosen by the control designer). To illustrate applicability of funnel control in “real world” measurement results are presented for speed and position control of an unknown rotatory system subject to (varying) friction and load disturbances. The results are compared with classical PI/PID control.

[1]  Christoph M. Hackl,et al.  Funnel-control with online foresight , 2007 .

[2]  D. Schroder,et al.  Nonidentifier.based adaptive control with saturated control input compensation , 2007, 2007 Mediterranean Conference on Control & Automation.

[3]  Christian Endisch,et al.  Contributions to non-identifier based adaptive control in mechatronics , 2009, Robotics Auton. Syst..

[4]  C. Byrnes,et al.  Adaptive stabilization of multivariable linear systems , 1984, The 23rd IEEE Conference on Decision and Control.

[5]  Chris Sangwin,et al.  Tracking with prescribed transient behaviour , 2002 .

[6]  Carlos Canudas de Wit,et al.  A new model for control of systems with friction , 1995, IEEE Trans. Autom. Control..

[7]  Stuart Townley,et al.  Input Constrained Adaptive Tracking with Applications to Exothermic Chemical Reaction Models , 2004, SIAM J. Control. Optim..

[8]  Hassan K. Khalil,et al.  Universal integral controllers for minimum-phase nonlinear systems , 2000, IEEE Trans. Autom. Control..

[9]  Dierk Schröder,et al.  Elektrische Antriebe - Regelung von Antriebssystemen , 2001 .

[10]  Christoph M. Hackl,et al.  Funnel-control with constrained control input compensation , 2007 .

[11]  Eugene P. Ryan,et al.  Funnel Control With Saturation: Linear MIMO Systems , 2010, IEEE Transactions on Automatic Control.

[12]  Alberto Isidori,et al.  Adaptive Dynamic Output Feedback Stabilisation of Nonlinear Systems , 2002 .

[13]  Eugene P. Ryan,et al.  Tracking with Prescribed Transient Behavior for Nonlinear Systems of Known Relative Degree , 2007, SIAM J. Control. Optim..

[14]  Markus Mueller,et al.  Funnel Control for Systems with Relative Degree Two , 2013, SIAM J. Control. Optim..

[15]  Achim Ilchmann,et al.  Non-identifier-based adaptive control of dynamical systems: a survey , 1991 .

[16]  Eugene P. Ryan,et al.  Funnel Control With Saturation: Nonlinear SISO Systems $ $ , 2010, IEEE Transactions on Automatic Control.

[17]  Carlos Canudas de Wit,et al.  A survey of models, analysis tools and compensation methods for the control of machines with friction , 1994, Autom..

[18]  E. P. Ryan,et al.  Controlled functional differential equations and adaptive stabilization , 2001 .

[19]  Iven Mareels,et al.  A simple selftuning controller for stably invertible systems , 1984 .

[20]  Bengt Mårtensson,et al.  The order of any stabilizing regulator is sufficient a priori information for adaptive stabilization , 1985 .

[21]  Daniel Liberzon,et al.  The bang-bang funnel controller , 2010, 49th IEEE Conference on Decision and Control (CDC).

[22]  R. W. De Doncker,et al.  Funnel control for speed & position control of electrical drives: A survey , 2011, 2011 19th Mediterranean Conference on Control & Automation (MED).

[23]  Christoph M. Hackl,et al.  High-gain adaptive position control , 2011, Int. J. Control.

[24]  Kouhei Ohnishi,et al.  Motion control for advanced mechatronics , 1996 .

[25]  Achim Ilchmann,et al.  High‐gain control without identification: a survey , 2008 .

[26]  Robert D. Lorenz,et al.  Comparison of motion control loops for industrial applications , 1999, Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No.99CH36370).

[27]  D. Schroder,et al.  Enhanced funnel-control with improved performance , 2007, 2007 Mediterranean Conference on Control & Automation.

[28]  D. Hinrichsen,et al.  Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness , 2010 .

[29]  Daniel E. Miller,et al.  An adaptive controller which provides an arbitrarily good transient and steady-state response , 1991 .

[30]  Hans Schuster,et al.  PI-Funnel Control for Two Mass Systems , 2009, IEEE Transactions on Automatic Control.

[31]  D. Schroder,et al.  Extension of High-Gain controllable systems for improved accuracy , 2006, 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control.

[32]  F. R. Gantmakher The Theory of Matrices , 1984 .

[33]  Stephan Trenn,et al.  Tracking control: Performance funnels and prescribed transient behaviour , 2005, Syst. Control. Lett..

[34]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[35]  Eugene P. Ryan,et al.  Systems of Controlled Functional Differential Equations and Adaptive Tracking , 2001, SIAM J. Control. Optim..

[36]  Jan Willem Polderman,et al.  Correction and simplification to “The order of a stabilizing regulator is sufficient a priori information for adaptive stabilization” , 1993 .

[37]  Achim Ilchmann,et al.  Non-Identifier-Based High-Gain Adaptive Control , 1993 .

[38]  Stuart Townley,et al.  Adaptive sampling control of high-gain stabilizable systems , 1999, IEEE Trans. Autom. Control..