Characteristics of InGaAs quantum dots grown on tensile-strained GaAs1−xPx

InGaAs quantum dots (QDs) embedded in tensile-strained GaAs1−xPx (x=0.0–0.45) barrier layers are grown using low-pressure metal-organic chemical-vapor deposition. Variable-temperature photoluminescence (PL) measurement demonstrates that the lowest-energy QD transition can be blueshifted up to 90nm compared with similar structures utilizing GaAs barriers. Temperature-dependent PL measurements and atomic force microscopy surface imaging show that the InGaAs QDs grown on GaAsP exhibit reduced height, which is consistent with shorter-wavelength emission. Preliminary results from broad stripe (100μm wide) diode lasers utilizing two stacks of InGaAs QDs embedded in GaAs0.82P0.18 barriers exhibit a 30% reduction in threshold current density compared with similar laser structures which have GaAs barriers.

[1]  U. Zeimer,et al.  Interdiffusion in highly strained InGaAs-QWs for high power laser diode applications , 2004 .

[2]  Chennupati Jagadish,et al.  InGaAs quantum dots grown with GaP strain compensation layers , 2004 .

[3]  Meimei Z. Tidrow,et al.  High detectivity InGaAs/InGaP quantum-dot infrared photodetectors grown by low pressure metalorganic chemical vapor deposition , 2004 .

[4]  S. Sanguinetti,et al.  Efficient room temperature carrier trapping in quantum dots by tailoring the wetting layer , 2003 .

[5]  Nikolai N. Ledentsov,et al.  InAs/InGaAs/GaAs quantum dot lasers of 1.3 μm range with enhanced optical gain , 2003 .

[6]  M. S. Skolnick,et al.  Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure , 2003 .

[7]  Peter Michael Smowton,et al.  Experimental investigation of the effect of wetting-layer states on the gain–current characteristic of quantum-dot lasers , 2002 .

[8]  Jasprit Singh,et al.  Self-assembled quantum dots: A study of strain energy and intersubband transitions , 2002 .

[9]  A. Larsson,et al.  Photoluminescence of an assembly of size-distributed self-assembled InAs quantum dots , 2002 .

[10]  Kristian M. Groom,et al.  Comparative study of InGaAs quantum dot lasers with different degrees of dot layer confinement , 2002 .

[11]  Sam Kyu Noh,et al.  Effects of high potential barrier on InAs quantum dots and wetting layer , 2002 .

[12]  J. Lott,et al.  Quantum dots for VCSEL applications at , 2002 .

[13]  Dieter Bimberg,et al.  Close-to-ideal device characteristics of high-power InGaAs/GaAs quantum dot lasers , 2001 .

[14]  T. Metzger,et al.  Determination of strain fields and composition of self-organized quantum dots using x-ray diffraction , 2001 .

[15]  D. Bimberg,et al.  Surface flattening during MOCVD of thin GaAs layers covering InGaAs quantum dots , 2000 .

[16]  G. Abstreiter,et al.  Influence of a thin AlAs cap layer on optical properties of self-assembled InAs/GaAs quantum dots , 1999 .

[17]  P. Werner,et al.  Self organized defect free InAs/GaAs and InAs/InGaAs/GaAs quantum dots with high lateral density grown by MOCVD , 1998 .

[18]  Dieter Bimberg,et al.  Room-temperature continuous-wave lasing from stacked InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition , 1997 .

[19]  H. Sakaki,et al.  Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .