Computational simulation of internal bone remodeling
暂无分享,去创建一个
Franz G. Rammerstorfer | Heinz E. Pettermann | F. Rammerstorfer | H. Pettermann | T. Reiter | T. J. Reiter | F. G. Rammerstorfer
[1] R. B. Ashman,et al. Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. , 1993, Journal of biomechanics.
[2] J. Katz. Hard tissue as a composite material. I. Bounds on the elastic behavior. , 1971, Journal of biomechanics.
[3] K. Piekarski. Analysis of bone as a composite material , 1973 .
[4] Timothy P. Harrigan,et al. Finite element simulation of adaptive bone remodelling: A stability criterion and a time stepping method , 1993 .
[5] R M Rose,et al. Elastic and viscoelastic properties of trabecular bone: dependence on structure. , 1973, Journal of biomechanics.
[6] Richard M. Christensen,et al. Mechanics of low density materials , 1986 .
[7] S. Lees,et al. The role of collagen in the elastic properties of calcified tissues. , 1977, Journal of biomechanics.
[8] J J Hamilton,et al. An analytical and numerical study of the stability of bone remodelling theories: dependence on microstructural stimulus. , 1992, Journal of biomechanics.
[9] Study of microstructural analysis methods. Implications for modeling trabecular bone microstructure , 1990 .
[10] J. Wolff. Das Gesetz der Transformation der Knochen , 1893 .
[11] David B. Burr,et al. Structure, Function, and Adaptation of Compact Bone , 1989 .
[12] F. G. Rammerstorfer,et al. Ein Simulationsalgorithmus der natürlichen Anpassung des orthotropen Knochenmaterials , 1995 .
[13] J. C. Misra,et al. Effect of material damping on bone remodelling. , 1987, Journal of biomechanics.
[14] N. Kikuchi,et al. A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress. , 1994, Journal of biomechanics.
[15] H. Grootenboer,et al. Adaptive bone-remodeling theory applied to prosthetic-design analysis. , 1987, Journal of biomechanics.
[16] W. Hayes,et al. The compressive behavior of bone as a two-phase porous structure. , 1977, The Journal of bone and joint surgery. American volume.
[17] R. B. Ashman,et al. Elastic modulus of trabecular bone material. , 1988, Journal of biomechanics.
[18] R T Whalen,et al. Influence of physical activity on the regulation of bone density. , 1988, Journal of biomechanics.
[19] M Aleyaasin,et al. The effect of stress concentration on bone remodeling: theoretical predictions. , 1989, Journal of biomechanical engineering.
[20] F. G. Rammerstorfer,et al. Simulation of Natural Adaptation of Bone Material and Application in Optimum Composite Design , 1993 .
[21] H A Hogan,et al. Micromechanics modeling of Haversian cortical bone properties. , 1992, Journal of biomechanics.
[22] M. Ashby,et al. Cellular solids: Structure & properties , 1988 .
[23] Stephen C. Cowin,et al. Bone remodeling II: small strain adaptive elasticity , 1976 .
[24] D. Carter,et al. Relationships between loading history and femoral cancellous bone architecture. , 1989, Journal of biomechanics.
[25] F. Pauwels,et al. Gesammelte Abhandlungen zur funktionellen Anatomie des Bewegungsapparates , 1965 .
[26] J. Lewis,et al. Properties and an anisotropic model of cancellous bone from the proximal tibial epiphysis. , 1982, Journal of biomechanical engineering.
[27] P. Pedersen. On optimal orientation of orthotropic materials , 1989 .
[28] A. Meunier,et al. A generalized method for characterizing elastic anisotropy in solid living tissues , 1990 .
[29] S F Lipson,et al. The relationship between elastic properties and microstructure of bovine cortical bone. , 1984, Journal of biomechanics.
[30] L. S. Matthews,et al. The mechanical properties of human tibial trabecular bone as a function of metaphyseal location. , 1983, Journal of biomechanics.
[31] S. Goldstein,et al. Application of homogenization theory to the study of trabecular bone mechanics. , 1991, Journal of biomechanics.
[32] S A Goldstein,et al. The relationship between the structural and orthogonal compressive properties of trabecular bone. , 1994, Journal of biomechanics.
[33] A. Sadegh,et al. An evolutionary Wolff's law for trabecular architecture. , 1992, Journal of biomechanical engineering.
[34] K. Bucháček. Nonequilibrium bone remodelling: Changes of mass density and of the axes of anisotropy , 1990 .
[35] J. Currey. Three analogies to explain the mechanical properties of bone , 1964 .
[36] M. Aleyaasin,et al. Evolution of bone inhomogeneity around a hole in an orthotropic plate of bone: theoretical predictions. , 1992, Journal of biomechanics.
[37] S. Cowin,et al. On the dependence of the elasticity and strength of cancellous bone on apparent density. , 1988, Journal of biomechanics.
[38] Stephen C. Cowin,et al. Bone remodeling III: uniqueness and stability in adaptive elasticity theory , 1978 .
[39] S. Cowin,et al. Bone remodeling I: theory of adaptive elasticity , 1976 .
[40] P J Prendergast,et al. Design of intramedullary prostheses to prevent bone loss: predictions based on damage-stimulated remodelling. , 1992, Journal of biomedical engineering.
[41] L. Gibson. The mechanical behaviour of cancellous bone. , 1985, Journal of biomechanics.
[42] G S Beaupré,et al. An approach for time‐dependent bone modeling and remodeling—theoretical development , 1990, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.
[43] F. G. Rammerstorfer,et al. Computerunterstützte Vorhersage des Knochenumbaus am Beispiel von Knieendoprothesen , 1995 .
[44] R M Rose,et al. The distribution and anisotropy of the stiffness of cancellous bone in the human patella. , 1975, Journal of biomechanics.
[45] W. Hayes,et al. Finite element analysis of a three-dimensional open-celled model for trabecular bone. , 1985, Journal of biomechanical engineering.
[46] Large Rotations in Structural Mechanics — Overview , 1992 .
[47] S C Cowin,et al. The fabric dependence of the orthotropic elastic constants of cancellous bone. , 1990, Journal of biomechanics.
[48] S C Cowin,et al. Bone remodeling of diaphyseal surfaces by torsional loads: theoretical predictions. , 1987, Journal of biomechanics.
[49] D. Carter,et al. A unifying principle relating stress to trabecular bone morphology , 1986, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.
[50] R. Huiskes,et al. A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. , 1995, Journal of biomechanics.
[51] A. Burstein,et al. The elastic modulus for bone. , 1974, Journal of biomechanics.
[52] H. Frost. The Laws of Bone Structure , 1965 .
[53] H A Hogan,et al. An evaluation of a micropolar model for blood flow through an idealized stenosis. , 1989, Journal of biomechanics.
[54] D P Fyhrie,et al. Trabecular bone density and loading history: regulation of connective tissue biology by mechanical energy. , 1987, Journal of biomechanics.
[55] Timothy P. Harrigan,et al. Optimality conditions for finite element simulation of adaptive bone remodeling , 1992 .
[56] Martin Rb. Porosity and specific surface of bone. , 1984 .