Structural Topology Optimization of Braced Steel Frameworks Using Genetic Programming

This paper presents a genetic programming method for the topological optimization of bracing systems for steel frameworks. The method aims to create novel, but practical, optimally-directed design solutions, the derivation of which can be readily understood. Designs are represented as trees with one-bay, one-story cellular bracing units, operated on by design modification functions. Genetic operators (reproduction, crossover, mutation) are applied to trees in the development of subsequent populations. The bracing design for a three-bay, 12-story steel framework provides a preliminary test problem, giving promising initial results that reduce the structural mass of the bracing in comparison to previous published benchmarks for a displacement constraint based on design codes. Further method development and investigations are discussed.