Belief propagation for continuous state spaces: stochastic message-passing with quantitative guarantees

The sum-product or belief propagation (BP) algorithm is a widely used message-passing technique for computing approximate marginals in graphical models. We introduce a new technique, called stochastic orthogonal series message-passing (SOSMP), for computing the BP fixed point in models with continuous random variables. It is based on a deterministic approximation of the messages via orthogonal series basis expansion, and a stochastic estimation of the basis coefficients via Monte Carlo techniques and damped updates. We prove that the SOSMP iterates converge to a δ-neighborhood of the unique BP fixed point for any tree-structured graph, and for any graphs with cycles in which the BP updates satisfy a contractivity condition. In addition, we demonstrate how to choose the number of basis coefficients as a function of the desired approximation accuracy δ and smoothness of the compatibility functions. We illustrate our theory with both simulated examples and in application to optical flow estimation.

[1]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[2]  H.-A. Loeliger,et al.  An introduction to factor graphs , 2004, IEEE Signal Process. Mag..

[3]  Robert J. McEliece,et al.  The generalized distributive law , 2000, IEEE Trans. Inf. Theory.

[4]  F. Clarke Functional Analysis, Calculus of Variations and Optimal Control , 2013 .

[5]  John W. Fisher,et al.  Loopy Belief Propagation: Convergence and Effects of Message Errors , 2005, J. Mach. Learn. Res..

[6]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[7]  Michael Isard,et al.  Continuously-adaptive discretization for message-passing algorithms , 2008, NIPS.

[8]  Martin J. Wainwright,et al.  Quantized stochastic belief propagation: Efficient message-passing for continuous state spaces , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[9]  Le Song,et al.  Kernel Belief Propagation , 2011, AISTATS.

[10]  Martin J. Wainwright,et al.  Convergence Analysis of Reweighted Sum-Product Algorithms , 2007, IEEE Transactions on Signal Processing.

[11]  Sekhar Tatikonda,et al.  Loopy Belief Propogation and Gibbs Measures , 2002, UAI.

[12]  Hilbert J. Kappen,et al.  Sufficient Conditions for Convergence of the Sum–Product Algorithm , 2005, IEEE Transactions on Information Theory.

[13]  Martin J. Wainwright,et al.  Information-Theoretic Lower Bounds on the Oracle Complexity of Stochastic Convex Optimization , 2010, IEEE Transactions on Information Theory.

[14]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[15]  Chong Gu Smoothing Spline Anova Models , 2002 .

[16]  William T. Freeman,et al.  Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.

[17]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[18]  Michael Isard,et al.  Nonparametric belief propagation , 2010, Commun. ACM.

[19]  Martin J. Wainwright,et al.  Stochastic Belief Propagation: A Low-Complexity Alternative to the Sum-Product Algorithm , 2011, IEEE Transactions on Information Theory.

[20]  Petr Hájek,et al.  Banach Space Theory: The Basis for Linear and Nonlinear Analysis , 2010 .

[21]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[22]  Kellen Petersen August Real Analysis , 2009 .

[23]  R. Durrett Probability: Theory and Examples , 1993 .

[24]  Michael Isard,et al.  PAMPAS: real-valued graphical models for computer vision , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[25]  Paolo Napoletano,et al.  Motion Estimation via Belief Propagation , 2007, 14th International Conference on Image Analysis and Processing (ICIAP 2007).

[26]  Fan Chung Graham,et al.  Concentration Inequalities and Martingale Inequalities: A Survey , 2006, Internet Math..

[27]  Andreas Christmann,et al.  Support vector machines , 2008, Data Mining and Knowledge Discovery Handbook.

[28]  John Darzentas,et al.  Problem Complexity and Method Efficiency in Optimization , 1983 .

[29]  David A. McAllester,et al.  Particle Belief Propagation , 2009, AISTATS.

[30]  James M. Coughlan,et al.  Dynamic quantization for belief propagation in sparse spaces , 2007, Comput. Vis. Image Underst..

[31]  Michael I. Jordan Graphical Models , 2003 .

[32]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[33]  Richard Szeliski,et al.  A Database and Evaluation Methodology for Optical Flow , 2007, 2007 IEEE 11th International Conference on Computer Vision.