Catalan pairs and Fishburn triples

Disanto, Ferrari, Pinzani and Rinaldi have introduced the concept of 'Catalan pair', which is a pair of partial orders (S,R) satisfying certain axioms. They have shown that Catalan pairs provide a natural description of objects belonging to several classes enumerated by Catalan numbers. In this paper, we first introduce another axiomatic structure (T,R), which we call the 'Catalan pair of type 2', which describes certain Catalan objects that do not seem to have an easy interpretation in terms of the original Catalan pairs. We then introduce 'Fishburn triples', which are relational structures obtained as a direct common generalization of the two types of Catalan pairs. Fishburn triples encode, in a natural way, the structure of objects enumerated by the Fishburn numbers, such as interval orders or Fishburn matrices. This connection between Catalan objects and Fishburn objects allows us to associate known statistics on Catalan objects with analogous statistics of Fishburn objects. As our main result, we then show that several known equidistribution results on Catalan statistics can be generalized to analogous results for Fishburn statistics.

[1]  Emeric Deutsch,et al.  An involution on Dyck paths and its consequences , 1999, Discret. Math..

[2]  Vít Jelínek,et al.  Composition Matrices, (2+2)-Free Posets and their Specializations , 2011, Electron. J. Comb..

[3]  Robert Parviainen,et al.  Wilf classification of bi-vincular permutation patterns , 2009, 0910.5103.

[4]  Filippo Disanto,et al.  Catalan pairs: A relational-theoretic approach to Catalan numbers , 2010, Adv. Appl. Math..

[5]  Filippo Disanto,et al.  Combinatorial properties of Catalan pairs , 2009, Electron. Notes Discret. Math..

[6]  R. Luce Semiorders and a Theory of Utility Discrimination , 1956 .

[7]  P. Fishburn Intransitive indifference with unequal indifference intervals , 1970 .

[8]  Jeffrey B. Remmel,et al.  Enumerating (2+2)-free posets by the number of minimal elements and other statistics , 2011, Discret. Appl. Math..

[9]  Toufik Mansour,et al.  Some enumerative results related to ascent sequences , 2012, Discret. Math..

[10]  Martin Rubey,et al.  Bijections for lattice paths between two boundaries , 2012 .

[11]  Soheir M. Khamis,et al.  Height counting of unlabeled interval and N-free posets , 2004, Discret. Math..

[12]  Samuel Huang,et al.  Problems of Associativity: A Simple Proof for the Lattice Property of Systems Ordered by a Semi-associative Law , 1972, J. Comb. Theory, Ser. A.

[13]  D. Zagier Vassiliev invariants and a strange identity related to the Dedekind eta-function , 2001 .

[14]  Yan X. Zhang,et al.  Enumeration of Graded (3 + 1)-Avoiding Posets , 2012 .

[15]  Joel Brewster Lewis,et al.  Enumeration of graded (3+1)(3+1)-avoiding posets , 2013, J. Comb. Theory, Ser. A.

[16]  Svante Linusson,et al.  n! matchings, n! posets , 2010 .

[17]  Peter C. Fishburn,et al.  Interval orders and interval graphs : a study of partially ordered sets , 1985 .

[18]  S. Rinaldi,et al.  Catalan Lattices on Series Parallel Interval Orders , 2010, 1007.1911.

[19]  Paul Levande Fishburn diagrams, Fishburn numbers and their refined generating functions , 2013, J. Comb. Theory, Ser. A.

[20]  George E. Andrews,et al.  On q-series identities related to interval orders , 2013, Eur. J. Comb..

[21]  Mathieu Guay-Paquet,et al.  Structure and Enumeration of (3+1)-Free Posets , 2012 .

[22]  Mark Dukes,et al.  Ascent Sequences and Upper Triangular Matrices Containing Non-Negative Integers , 2009, Electron. J. Comb..

[23]  Filippo Disanto,et al.  Catalan structures and Catalan pairs , 2010, Theor. Comput. Sci..

[24]  Sherry H. F. Yan On a conjecture about enumerating (2+2)-free posets , 2011, Eur. J. Comb..

[25]  Brian Reed,et al.  Total nonnegativity and (3+1)-free posets , 2003, J. Comb. Theory, Ser. A.

[26]  Einar Steingrímsson,et al.  Pattern Avoidance in Ascent Sequences , 2011, Electron. J. Comb..

[27]  J. Remmel,et al.  Enumerating (2+2)-free posets by indistinguishable elements , 2010, 1006.2696.

[28]  Filippo Disanto,et al.  A partial order structure on interval orders , 2012, ArXiv.

[29]  Sergey Kitaev,et al.  (2+2)-free Posets, Ascent Sequences and Pattern Avoiding Permutations , 2008, J. Comb. Theory, Ser. A.

[30]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[31]  Vít Jelínek,et al.  Counting general and self-dual interval orders , 2011, J. Comb. Theory, Ser. A.

[32]  Mark Skandera A Characterization of (3+1)-Free Posets , 2001, J. Comb. Theory, Ser. A.

[33]  A. Stoimenow ENUMERATION OF CHORD DIAGRAMS AND AN UPPER BOUND FOR VASSILIEV INVARIANTS , 1998 .

[34]  Filippo Disanto,et al.  Generation and Enumeration of Some Classes of Interval Orders , 2013, Order.

[35]  Dov Tamari,et al.  Problèmes d'associativité: Une structure de treillis finis induite par une loi demi-associative , 1967 .

[36]  T. Mansour,et al.  Restricted ascent sequences and Catalan numbers , 2014, 1403.6933.

[37]  Peter C. Fishburn,et al.  Interval graphs and interval orders , 1985, Discret. Math..

[38]  Martin Rubey Increasing and decreasing sequences in fillings of moon polyominoes , 2011, Adv. Appl. Math..