Spatio-temporal downscaling of gridded crop model yield estimates based on machine learning

[1]  John R. Williams,et al.  Development and application of the EPIC model for carbon cycle, greenhouse-gas mitigation, and biofuel studies , 2012 .

[2]  Juraj Balkovic,et al.  Consistent negative response of US crops to high temperatures in observations and crop models , 2017, Nature Communications.

[3]  James W. Jones,et al.  An AgMIP framework for improved agricultural representation in integrated assessment models , 2017, Environmental research letters : ERL [Web site].

[4]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[5]  T. Gaiser,et al.  Validation and reliability of the EPIC model to simulate maize production in small-holder farming systems in tropical sub-humid West Africa and semi-arid Brazil , 2010 .

[6]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[7]  Tianqi Chen,et al.  XGBoost: A Scalable Tree Boosting System , 2016, KDD.

[8]  Senén Barro,et al.  Do we need hundreds of classifiers to solve real world classification problems? , 2014, J. Mach. Learn. Res..

[9]  R. C. Izaurralde,et al.  Epic Model Parameters for Cereal, Oilseed, and Forage Crops in the Northern Great Plains Region , 1995 .

[10]  C. Folberth,et al.  Uncertainty in soil data can outweigh climate impact signals in global crop yield simulations , 2016, Nature Communications.

[11]  J. Olsen,et al.  The European Commission , 2020, The European Union.

[12]  E. Fegraus,et al.  Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning , 2017, Nutrient Cycling in Agroecosystems.

[13]  Martin K. van Ittersum,et al.  Scale changes and model linking methods for integrated assessment of agri-environmental systems , 2011 .

[14]  James W. Jones,et al.  An AgMIP framework for improved agricultural representation in integrated assessment models , 2017, Environmental research letters : ERL [Web site].

[15]  G. Fischer,et al.  Global Agro-ecological Zones (GAEZ v3.0)- Model Documentation , 2012 .

[16]  P. Döll,et al.  MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: A new high‐resolution data set for agricultural and hydrological modeling , 2010 .

[17]  A. Arneth,et al.  Climate analogues suggest limited potential for intensification of production on current croplands under climate change , 2016, Nature Communications.

[18]  Andrew Jarvis,et al.  Hole-filled SRTM for the globe Version 4 , 2008 .

[19]  C. Field,et al.  Crop yield gaps: their importance, magnitudes, and causes. , 2009 .

[20]  C. Folberth,et al.  Global wheat production potentials and management flexibility under the representative concentration pathways , 2014 .

[21]  Jimmy R. Williams,et al.  Simulating soil C dynamics with EPIC: Model description and testing against long-term data , 2006 .

[22]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[23]  K. Abbaspour,et al.  Modeling maize yield responses to improvement in nutrient, water and cultivar inputs in sub-Saharan Africa , 2013 .

[24]  K. Abbaspour,et al.  Regionalization of a large-scale crop growth model for sub-Saharan Africa: Model setup, evaluation, and estimation of maize yields , 2012 .

[25]  Roberto O. Valdivia,et al.  Coordinating AgMIP data and models across global and regional scales for 1.5°C and 2.0°C assessments , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[26]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[27]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[28]  D. Deryng,et al.  Crop planting dates: an analysis of global patterns. , 2010 .

[29]  Nicolai Meinshausen,et al.  Quantile Regression Forests , 2006, J. Mach. Learn. Res..

[30]  Frank Ewert,et al.  Regional crop modelling in Europe: The impact of climatic conditions and farm characteristics on maize yields , 2009 .

[31]  Thomas Lengauer,et al.  Classification with correlated features: unreliability of feature ranking and solutions , 2011, Bioinform..

[32]  Tongli Wang,et al.  Locally Downscaled and Spatially Customizable Climate Data for Historical and Future Periods for North America , 2016, PloS one.

[33]  K. Ikemura Development and application , 1971 .

[34]  P. Jones,et al.  A European daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006 , 2008 .

[35]  C. Müller,et al.  Understanding the weather signal in national crop‐yield variability , 2017 .

[36]  M. Trnka,et al.  ‘Fingerprints’ of four crop models as affected by soil input data aggregation , 2014 .

[37]  P. E. O'connell,et al.  River flow forecasting through conceptual models part III - The Ray catchment at Grendon Underwood , 1970 .

[38]  Elodie Blanc,et al.  Emulating maize yields from global gridded crop models using statistical estimates , 2015 .

[39]  Steven E. Franklin,et al.  A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery , 2012 .

[40]  Marvin N. Wright,et al.  SoilGrids250m: Global gridded soil information based on machine learning , 2017, PloS one.

[41]  H. Keulen,et al.  Regional crop modelling. , 2006 .

[42]  Claudia Notarnicola,et al.  Review of Machine Learning Approaches for Biomass and Soil Moisture Retrievals from Remote Sensing Data , 2015, Remote. Sens..

[43]  John R. Williams,et al.  A method for estimating the direct and climatic effects of rising atmospheric carbon dioxide on growth and yield of crops: Part I--Modification of the EPIC model for climate change analysis , 1992 .

[44]  Xiuying Wang,et al.  Impact of input data resolution and extent of harvested areas on crop yield estimates in large-scale agricultural modeling for maize in the USA , 2012 .

[45]  C. Müller,et al.  The Global Gridded Crop Model Intercomparison: data and modeling protocols for Phase 1 (v1.0) , 2014 .

[46]  A. Ruane,et al.  Climate forcing datasets for agricultural modeling: Merged products for gap-filling and historical climate series estimation , 2015 .

[47]  E. Schmid,et al.  Global land-use implications of first and second generation biofuel targets , 2011 .

[48]  Carol X. Song,et al.  Global Gridded Crop Model evaluation: benchmarking, skills, deficiencies and implications , 2016 .

[49]  N. Ramankutty,et al.  Closing yield gaps through nutrient and water management , 2012, Nature.

[50]  É. Blanc Statistical Emulators of Maize, Rice, Soybean and Wheat Yields from Global Gridded Crop Models , 2017 .

[51]  S. Delerce,et al.  Assessing Weather-Yield Relationships in Rice at Local Scale Using Data Mining Approaches , 2016, PloS one.

[52]  James W. Jones,et al.  Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison , 2013, Proceedings of the National Academy of Sciences.

[53]  Dieter Gerten,et al.  Emulating global climate change impacts on crop yields , 2015 .

[54]  J. Nash,et al.  River flow forecasting through conceptual models part I — A discussion of principles☆ , 1970 .

[55]  K. Abbaspour,et al.  A Global and Spatially Explicit Assessment of Climate Change Impacts on Crop Production and Consumptive Water Use , 2013, PloS one.

[56]  Stephen E. Fick,et al.  WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas , 2017 .

[57]  V. Singh,et al.  The EPIC model. , 1995 .

[58]  T. McMahon,et al.  Updated world map of the Köppen-Geiger climate classification , 2007 .

[59]  C. Müller,et al.  Projecting future crop productivity for global economic modeling , 2014 .

[60]  John R. Williams,et al.  EPIC-erosion/productivity impact calculator: 1. Model documentation. , 1990 .

[61]  R. Bonhomme,et al.  Bases and limits to using 'degree.day' units , 2000 .