Noiseless Linear Amplifiers in Entanglement-Based Continuous-Variable Quantum Key Distribution

We propose a method to improve the performance of two entanglement-based continuous-variable quantum key distribution protocols using noiseless linear amplifiers. The two entanglement-based schemes consist of an entanglement distribution protocol with an untrusted source and an entanglement swapping protocol with an untrusted relay. Simulation results show that the noiseless linear amplifiers can improve the performance of these two protocols, in terms of maximal transmission distances, when we consider small amounts of entanglement, as typical in realistic setups.

[1]  Wanyi Gu,et al.  Improvement of two-way continuous-variable quantum key distribution using optical amplifiers , 2014 .

[2]  N. Cerf,et al.  Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. , 2006, Physical Review Letters.

[3]  Christian Weedbrook,et al.  Device-independent quantum cryptography for continuous variables , 2014, 1405.6983.

[4]  Wanyi Gu,et al.  Continuous-variable measurement-device-independent quantum key distribution using squeezed states , 2014, 1406.0973.

[5]  S. McLaughlin,et al.  Quantum key distribution over 25 km with an all-fiber continuous-variable system , 2007, 0706.4255.

[6]  M. Barbieri,et al.  Improving the maximum transmission distance of continuous-variable quantum key distribution using a noiseless amplifier , 2012, 1205.0959.

[7]  N. Cerf,et al.  Gaussian postselection and virtual noiseless amplification in continuous-variable quantum key distribution , 2012 .

[8]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[9]  G. Guo,et al.  Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack , 2013, 1302.0090.

[10]  V. Scarani,et al.  Device-independent security of quantum cryptography against collective attacks. , 2007, Physical review letters.

[11]  G. Guo,et al.  Quantum hacking on quantum key distribution using homodyne detection , 2014, 1402.6921.

[12]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[13]  P. Grangier,et al.  Continuous variable quantum cryptography using coherent states. , 2001, Physical review letters.

[14]  Nathan Walk,et al.  Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution , 2014, 1405.6593.

[15]  Renato Renner,et al.  Security of continuous-variable quantum key distribution against general attacks. , 2012, Physical review letters.

[16]  L. Liang,et al.  Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems , 2013, 1303.6043.

[17]  S. Lloyd,et al.  Characterization of collective Gaussian attacks and security of coherent-state quantum cryptography. , 2008, Physical review letters.

[18]  W. Gu,et al.  Improving the maximum transmission distance of continuous-variable quantum key distribution with noisy coherent states using a noiseless amplifier , 2014 .

[19]  Zhang Jiang,et al.  Quantum limits on probabilistic amplifiers , 2013, 1304.3901.

[20]  Nathan Walk,et al.  Security of continuous-variable quantum cryptography with Gaussian postselection , 2013 .

[21]  Vikram Sharma,et al.  No-switching quantum key distribution using broadband modulated coherent light. , 2005, Physical review letters.

[22]  Xiang Peng,et al.  Continuous-variable measurement-device-independent quantum key distribution with imperfect detectors , 2014, CLEO 2014.

[23]  Mu-Sheng Jiang,et al.  Wavelength attack on practical continuous-variable quantum-key-distribution system with a heterodyne protocol , 2013 .

[24]  Stefano Pirandola,et al.  High-rate measurement-device-independent quantum cryptography , 2013, Nature Photonics.

[25]  Seth Lloyd,et al.  Direct and reverse secret-key capacities of a quantum channel. , 2008, Physical review letters.

[26]  Seth Lloyd,et al.  Continuous Variable Quantum Cryptography using Two-Way Quantum Communication , 2006, ArXiv.

[27]  T. Symul,et al.  Theoretical analysis of an ideal noiseless linear amplifier for Einstein–Podolsky–Rosen entanglement distillation , 2014, 1411.0341.

[28]  Stefano Pirandola,et al.  Side-channel-free quantum key distribution. , 2011, Physical review letters.

[29]  Vladyslav C. Usenko,et al.  Feasibility of continuous-variable quantum key distribution with noisy coherent states , 2009, 0904.1694.

[30]  Christian Weedbrook,et al.  Continuous-variable quantum key distribution with entanglement in the middle , 2012, 1205.1497.

[31]  Nathan Killoran,et al.  Optimal working points for continuous-variable quantum channels , 2013, 1301.6051.

[32]  Nathan Walk,et al.  Measurement-based noiseless linear amplification for quantum communication , 2014, Nature Photonics.

[33]  J. Cirac,et al.  De Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography. , 2008, Physical review letters.

[34]  F. Zhu,et al.  Improving the maximum transmission distance of four-state continuous-variable quantum key distribution by using a noiseless linear amplifier , 2012, 1210.0107.

[35]  Seth Lloyd,et al.  Quantum cryptography approaching the classical limit. , 2010, Physical review letters.

[36]  M. Hayashi,et al.  Quantum information with Gaussian states , 2007, 0801.4604.

[37]  S. Wehner,et al.  Bell Nonlocality , 2013, 1303.2849.

[38]  Stefano Pirandola,et al.  Two-way quantum cryptography at different wavelengths , 2013, 1309.7973.

[39]  Miguel Navascués,et al.  Optimality of Gaussian attacks in continuous-variable quantum cryptography. , 2006, Physical review letters.

[40]  Stefano Pirandola,et al.  Continuous-Variable Quantum Key Distribution using Thermal States , 2011, 1110.4617.

[41]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[42]  J. Eisert,et al.  Distillation of continuous-variable entanglement with optical means , 2003, quant-ph/0307106.

[43]  Raúl García-Patrón,et al.  Continuous-variable quantum key distribution protocols over noisy channels. , 2008, Physical review letters.

[44]  N. Cerf,et al.  Quantum key distribution using gaussian-modulated coherent states , 2003, Nature.

[45]  N. Walk,et al.  Heralded noiseless linear amplification and distillation of entanglement , 2009, 0907.3638.

[46]  Christian Weedbrook,et al.  Quantum cryptography without switching. , 2004, Physical review letters.

[47]  Hong Guo,et al.  SECURITY OF A NEW TWO-WAY CONTINUOUS-VARIABLE QUANTUM KEY DISTRIBUTION PROTOCOL , 2011, 1110.1818.

[48]  E. Diamanti,et al.  Preventing Calibration Attacks on the Local Oscillator in Continuous-Variable Quantum Key Distribution , 2013, 1304.7024.

[49]  S. Braunstein,et al.  Quantum Information with Continuous Variables , 2004, quant-ph/0410100.

[50]  N. Cerf,et al.  Quantum distribution of Gaussian keys using squeezed states , 2000, quant-ph/0008058.

[51]  Samuel L. Braunstein,et al.  Continuous-variable quantum cryptography with an untrusted relay: Detailed security analysis of the symmetric configuration , 2015, 1506.05430.

[52]  A. Winter,et al.  Distillation of secret key and entanglement from quantum states , 2003, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[53]  Nathan Walk,et al.  Nondeterministic noiseless amplification via non-symplectic phase space transformations , 2012, 1211.3794.

[54]  Eleni Diamanti,et al.  Experimental demonstration of long-distance continuous-variable quantum key distribution , 2012, Nature Photonics.