Evolution under canalization and the dual roles of microRNAs: a hypothesis.

Canalization refers to the process by which phenotypes are stabilized within species. Evolution by natural selection can proceed efficiently only when phenotypes are canalized. The existence and identity of canalizing genes have thus been an important, but controversial topic. Recent evidence has increasingly hinted that microRNAs may be involved in canalizing gene expression. Their paradoxical properties (e.g., strongly conserved but functionally dispensable) suggest unconventional regulatory roles. We synthesized published and unpublished results and hypothesize that miRNAs may have dual functions -- in gene expression tuning and in expression buffering. In tuning, miRNAs modify the mean expression level of their targets, but in buffering they merely reduce the variance around a preset mean. In light of the constant emergence of new miRNAs, we further discuss the relative importance of these two functions in evolution.

[1]  N. Rajewsky microRNA target predictions in animals , 2006, Nature Genetics.

[2]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[3]  T. Maniatis,et al.  Multilevel Regulation of Gene Expression by MicroRNAs , 2008, Science.

[4]  Chau-Ti Ting,et al.  Genes and speciation , 2001, Nature Reviews Genetics.

[5]  N. Wingreen,et al.  A quantitative comparison of sRNA-based and protein-based gene regulation , 2008, Molecular systems biology.

[6]  Yan Li,et al.  MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila. , 2006, Genes & development.

[7]  Mark A McPeek,et al.  The phylogenetic distribution of metazoan microRNAs: insights into evolutionary complexity and constraint. , 2006, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[8]  R. Russell,et al.  Principles of MicroRNA–Target Recognition , 2005, PLoS biology.

[9]  O. Hobert Common logic of transcription factor and microRNA action. , 2004, Trends in biochemical sciences.

[10]  V. Ambros,et al.  An Extensive Class of Small RNAs in Caenorhabditis elegans , 2001, Science.

[11]  Michael Kertesz,et al.  The role of site accessibility in microRNA target recognition , 2007, Nature Genetics.

[12]  Oliver Hobert,et al.  miRNAs Play a Tune , 2007, Cell.

[13]  Benjamin L Turner,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S3 Table S1 References Robust, Tunable Biological Oscillations from Interlinked Positive and Negative Feedback Loops , 2022 .

[14]  Lynn Doucette-Stamm,et al.  A C . elegans genome-scale microRNA network contains composite feedback motifs with high flux capacity , 2008 .

[15]  J. Raser,et al.  Noise in Gene Expression: Origins, Consequences, and Control , 2005, Science.

[16]  Kai Zeng,et al.  Adaptive evolution of newly emerged micro-RNA genes in Drosophila. , 2008, Molecular biology and evolution.

[17]  R. A. Fisher,et al.  The Genetical Theory of Natural Selection , 1931 .

[18]  T. Elston,et al.  Stochasticity in gene expression: from theories to phenotypes , 2005, Nature Reviews Genetics.

[19]  I. Gérin,et al.  The microRNA miR-8 is a conserved negative regulator of Wnt signaling , 2008, Proceedings of the National Academy of Sciences.

[20]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[21]  Q. Cui,et al.  Principles of microRNA regulation of a human cellular signaling network , 2006, Molecular systems biology.

[22]  M. McPeek,et al.  Complex genetic interactions underlying expression differences between Drosophila races: Analysis of chromosome substitutions , 2008, Proceedings of the National Academy of Sciences.

[23]  F. Slack,et al.  Small non-coding RNAs in animal development , 2008, Nature Reviews Molecular Cell Biology.

[24]  R. Plasterk,et al.  MicroRNA function in animal development , 2005, FEBS letters.

[25]  Waddington Ch,et al.  Canalization of Development and Genetic Assimilation of Acquired Characters , 1959 .

[26]  R. Russell,et al.  Animal MicroRNAs Confer Robustness to Gene Expression and Have a Significant Impact on 3′UTR Evolution , 2005, Cell.

[27]  Xin Li,et al.  A microRNA Mediates EGF Receptor Signaling and Promotes Photoreceptor Differentiation in the Drosophila Eye , 2005, Cell.

[28]  C. Waddington Canalization of Development and the Inheritance of Acquired Characters , 1942, Nature.

[29]  C. S. Sullivan New roles for large and small viral RNAs in evading host defences , 2008, Nature Reviews Genetics.

[30]  Kristin C. Gunsalus,et al.  microRNA Target Predictions across Seven Drosophila Species and Comparison to Mammalian Targets , 2005, PLoS Comput. Biol..

[31]  Justin C. Fay,et al.  Sequence divergence, functional constraint, and selection in protein evolution. , 2003, Annual review of genomics and human genetics.

[32]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[33]  Megan F. Cole,et al.  Connecting microRNA Genes to the Core Transcriptional Regulatory Circuitry of Embryonic Stem Cells , 2008, Cell.

[34]  A. Bergman,et al.  Waddington's canalization revisited: Developmental stability and evolution , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Jason S. Cumbie,et al.  High-Throughput Sequencing of Arabidopsis microRNAs: Evidence for Frequent Birth and Death of MIRNA Genes , 2007, PloS one.

[36]  T. Tuschl,et al.  Identification of Novel Genes Coding for Small Expressed RNAs , 2001, Science.

[37]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[38]  Vincent De Guire,et al.  An E2F/miR-20a Autoregulatory Feedback Loop* , 2007, Journal of Biological Chemistry.

[39]  A. van Oudenaarden,et al.  MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. , 2007, Molecular cell.

[40]  N. Rajewsky,et al.  The evolution of gene regulation by transcription factors and microRNAs , 2007, Nature Reviews Genetics.

[41]  L. Lim,et al.  Transcripts Targeted by the MicroRNA-16 Family Cooperatively Regulate Cell Cycle Progression , 2007, Molecular and Cellular Biology.

[42]  L. Lim,et al.  An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caenorhabditis elegans , 2001, Science.

[43]  Andreas Wagner,et al.  Robustness Can Evolve Gradually in Complex Regulatory Gene Networks with Varying Topology , 2007, PLoS Comput. Biol..

[44]  S. Cohen,et al.  Genome-Wide Analysis of mRNAs Regulated by Drosha and Argonaute Proteins in Drosophila melanogaster , 2006, Molecular and Cellular Biology.

[45]  Kathryn A. O’Donnell,et al.  c-Myc-regulated microRNAs modulate E2F1 expression , 2005, Nature.

[46]  E. Miska,et al.  MicroRNA functions in animal development and human disease , 2005, Development.

[47]  A. Wagner,et al.  Innovation and robustness in complex regulatory gene networks , 2007, Proceedings of the National Academy of Sciences.

[48]  Edwin Cuppen,et al.  Diversity of microRNAs in human and chimpanzee brain , 2006, Nature Genetics.

[49]  G. Wagner,et al.  The Population Genetic Theory of Hidden Variation and Genetic Robustness , 2004, Genetics.

[50]  L. Lim,et al.  MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.

[51]  C. Wu,et al.  Genetics of postmating reproductive isolation in animals. , 1994, Annual review of genetics.

[52]  Julius Brennecke,et al.  Identification of Drosophila MicroRNA Targets , 2003, PLoS biology.

[53]  T. Ohta Slightly Deleterious Mutant Substitutions in Evolution , 1973, Nature.

[54]  Kevin Kim,et al.  Targets of microRNA regulation in the Drosophila oocyte proteome. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[55]  S. Cohen,et al.  microRNA miR-14 acts to modulate a positive autoregulatory loop controlling steroid hormone signaling in Drosophila. , 2007, Genes & development.

[56]  J. Mansfield MicroRNAs in Animal Development , 2010 .

[57]  L. Smirnova,et al.  A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment , 2008, Nature Cell Biology.

[58]  J. M. Thomson,et al.  Direct Regulation of an Oncogenic Micro-RNA Cluster by E2F Transcription Factors* , 2007, Journal of Biological Chemistry.

[59]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[60]  A. Schier,et al.  Target Protectors Reveal Dampening and Balancing of Nodal Agonist and Antagonist by miR-430 , 2007, Science.

[61]  Michael T. McManus,et al.  The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development , 2005, Nature.

[62]  A. Wagner Circuit topology and the evolution of robustness in two-gene circadian oscillators. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[63]  E. Wang MicroRNA Systems Biology , 2007, 0712.3569.

[64]  Julius Brennecke,et al.  Denoising feedback loops by thresholding--a new role for microRNAs. , 2006, Genes & development.

[65]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[66]  G. Odell,et al.  Robustness, Flexibility, and the Role of Lateral Inhibition in the Neurogenic Network , 2002, Current Biology.

[67]  B. Reinhart,et al.  Prediction of Plant MicroRNA Targets , 2002, Cell.

[68]  Jessica Treisman,et al.  The Conserved microRNA MiR-8 Tunes Atrophin Levels to Prevent Neurodegeneration in Drosophila , 2007, Cell.

[69]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[70]  A. Bergman,et al.  Evolutionary capacitance as a general feature of complex gene networks , 2003, Nature.

[71]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[72]  V. Ambros,et al.  Role of MicroRNAs in Plant and Animal Development , 2003, Science.

[73]  Edwin Wang,et al.  MicroRNA regulation and interspecific variation of gene expression. , 2007, Trends in genetics : TIG.

[74]  Colin N. Dewey,et al.  Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures , 2007, Nature.

[75]  G. Ruvkun,et al.  Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans , 1993, Cell.

[76]  D. Bartel,et al.  Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs , 2004, Nature Reviews Genetics.

[77]  H. Horvitz,et al.  Most Caenorhabditis elegans microRNAs Are Individually Not Essential for Development or Viability , 2007, PLoS genetics.

[78]  S. Lindquist,et al.  Hsp90 as a capacitor for morphological evolution , 1998, Nature.

[79]  Noam Shomron,et al.  Canalization of development by microRNAs , 2006, Nature Genetics.

[80]  O. Hobert Gene Regulation by Transcription Factors and MicroRNAs , 2008, Science.