Numerical investigation of a honeycomb liner grazed by laminar and turbulent boundary layers

Direct numerical simulations are used to study the interaction of a cavity-backed circular orifice with grazing laminar and turbulent boundary layers and incident sound waves. The flow conditions and geometry are representative of single degree-of-freedom acoustic liners applied in the inlet and exhaust ducts of aircraft engines and are the same as those from experiments conducted at NASA Langley. The simulations identify the fluid mechanics of how the sound field and state of the grazing boundary layer impact the in-orifice flow and suggest a simple flow analogy that enables scaling estimates. From the scaling estimates the simulations are then used to develop reduced-order models for the in-orifice flow and a time-domain impedance model is constructed. The liner is found to increase drag at all conditions studied by an amount that increases with the incident sound pressure amplitude.

[1]  F. Nieuwstadt,et al.  Reynolds-number-dependence of the maximum in the streamwise velocity fluctuations in wall turbulence , 1996 .

[2]  A. S. Hersh,et al.  Fluid mechanical model of the acoustic impedance of small orifices , 1975 .

[3]  Bill Schuster,et al.  A Comparison of Ensemble Averaging Methods Using Dean's Method for In-Situ Impedance Measurements , 2012 .

[4]  M. H. Dunn,et al.  The Low-Noise Potential of Distributed Propulsion on a Catamaran Aircraft , 2006 .

[5]  M. Goody Empirical Spectral Model of Surface Pressure Fluctuations , 2004 .

[6]  Willie R. Watson,et al.  Effects of Liner Geometry on Acoustic Impedance , 2002 .

[7]  Daniel J. Bodony,et al.  Numerical investigation and modelling of acoustically excited flow through a circular orifice backed by a hexagonal cavity , 2012, Journal of Fluid Mechanics.

[8]  L. J. Sivian Acoustic Impedance of Small Orifices , 1935 .

[9]  Willie R. Watson,et al.  Effects of Flow Profile on Educed Acoustic Liner Impedance , 2010 .

[10]  Daniel J. Bodony,et al.  Numerical Simulation of Two-Dimensional Acoustic Liners with High-Speed Grazing Flow , 2011 .

[11]  O. Botella,et al.  BENCHMARK SPECTRAL RESULTS ON THE LID-DRIVEN CAVITY FLOW , 1998 .

[12]  T. H. Melling,et al.  The acoustic impendance of perforates at medium and high sound pressure levels , 1973 .

[13]  Jeff D. Eldredge,et al.  The absorption of axial acoustic waves by a perforated liner with bias flow , 2003, Journal of Fluid Mechanics.

[14]  Daniel J. Bodony,et al.  Provably stable overset grid methods for computational aeroacoustics , 2011 .

[15]  Willie R. Watson,et al.  A Comparative Study of Four Impedance Eduction Methodologies Using Several Test Liners , 2013 .

[16]  J. Eaton,et al.  Reynolds-number scaling of the flat-plate turbulent boundary layer , 2000, Journal of Fluid Mechanics.

[17]  Miguel R. Visbal,et al.  On the use of higher-order finite-difference schemes on curvilinear and deforming meshes , 2002 .

[18]  Christopher K. W. Tam,et al.  Time-Domain Impedance Boundary Conditions for Computational Aeroacoustics , 1996 .

[19]  Lars Enghardt,et al.  Determination of the impedance for lined ducts with grazing flow , 2012 .

[20]  Stuart E. Rogers,et al.  PEGASUS 5: An Automated Preprocessor for Overset-Grid Computational Fluid Dynamics , 2003 .

[21]  Miguel R. Visbal,et al.  Automated Preprocessing Tools for Use with a High-Order Overset-Grid Algorithm , 2006 .

[22]  Allan D. Pierce,et al.  Acoustics , 1989 .

[23]  Christopher K. W. Tam,et al.  A NUMERICAL AND EXPERIMENTAL INVESTIGATION OF THE DISSIPATION MECHANISMS OF RESONANT ACOUSTIC LINERS , 2001 .

[24]  A. Cummings The response of a resonator under a turbulent boundary layer to a high amplitude non-harmonic sound field☆ , 1987 .

[25]  H. Saunders,et al.  Acoustics: An Introduction to Its Physical Principles and Applications , 1984 .

[26]  A. S. Hersh,et al.  The effect of grazing flow on the steady state resistance of square-edged orifices , 1975 .

[27]  Magnus Svärd,et al.  A stable high-order finite difference scheme for the compressible Navier-Stokes equations: No-slip wall boundary conditions , 2008, J. Comput. Phys..

[28]  Willie R. Watson,et al.  Effects of Mean Flow Assumption and Harmonic Distortion on Impedance Eduction Methods , 2015 .

[29]  Magnus Svärd,et al.  A stable high-order finite difference scheme for the compressible Navier-Stokes equations, far-field boundary conditions , 2007, J. Comput. Phys..

[30]  C. O. Paschereit,et al.  Acoustic response of Helmholtz dampers in the presence of hot grazing flow , 2015 .

[31]  Francois Vuillot,et al.  Aircraft Fan Noise Absorption: DNS of the Acoustic Dissipation of Resonant Liners , 2009 .

[32]  Stuart E. Rogers,et al.  Pegasus 5: An Automated Pre-Processor for Overset-Grid Cfd , 2013 .

[33]  Krishnan Mahesh,et al.  The Interaction of Jets with Crossflow , 2013 .

[34]  Carl H. Gerhold,et al.  Evaluation of Skin Friction Drag for Liner Applications in Aircraft , 2016 .

[35]  Dan Zhao,et al.  Lattice Boltzmann investigation of acoustic damping mechanism and performance of an in-duct circular orifice. , 2014, The Journal of the Acoustical Society of America.

[36]  Ronald L. Panton,et al.  Measurement of the acoustic impedance of an orifice under a turbulent boundary layer , 1976 .

[37]  Zhang Hou Effect of Grazing-Bias Flow Interaction on Acoustic Impedance of Perforated Plates , 2002 .

[38]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[39]  Xiaodong Jing,et al.  Effect of Grazing Flow on the Acoustic Impedance of an Orifice , 2001 .

[40]  A. Hirschberg,et al.  Acoustical response of orifices under grazing flow: Effect of boundary layer profile and edge geometry , 2008 .

[41]  Willie R. Watson,et al.  Design and Evaluation of Modifications to the NASA Langley Flow Impedance Tube , 2004 .

[42]  P. D. Dean,et al.  An in situ method of wall acoustic impedance measurement in flow ducts , 1974 .

[43]  Jeong-Guon Ih,et al.  A model of acoustic impedance of perforated plates with bias flow considering the interaction effect , 2007 .

[44]  Brian M. Howerton,et al.  Acoustic Liner Drag: A Parametric Study of Conventional Configurations , 2015 .

[45]  Peter Bradshaw,et al.  Spatial resolution and measurement of turbulence in the viscous sublayer using subminiature hot-wire probes , 1987 .

[46]  M. S. Howe,et al.  On the theory of unsteady high Reynolds number flow through a circular aperture , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[47]  M. Malik Numerical methods for hypersonic boundary layer stability , 1990 .

[48]  J. Spurk Boundary Layer Theory , 2019, Fluid Mechanics.

[49]  T. Schuller,et al.  Modeling the damping properties of perforated screens traversed by a bias flow and backed by a cavity at low Strouhal number , 2012 .

[50]  W. R. Watson,et al.  Experimental validation of numerical simulations for an acoustic liner in grazing flow: Self-noise and added drag , 2014 .

[51]  U. Ingard,et al.  Acoustic Circulation Effects and the Nonlinear Impedance of Orifices , 1950 .

[52]  Meng Wang,et al.  Aero-optics of subsonic turbulent boundary layers , 2012, Journal of Fluid Mechanics.

[53]  Yves Aurégan,et al.  Effect of turbulent eddy viscosity on the unstable surface mode above an acoustic liner , 2013 .

[54]  H. Bodén,et al.  Experimental Investigation of an In-Duct Orifice with Bias Flow under Medium and High Level Acoustic Excitation , 2014 .

[55]  Willie R. Watson,et al.  On the Use of Experimental Methods to Improve Confidence in Educed Impedance , 2011 .

[56]  U. Ingard On the Theory and Design of Acoustic Resonators , 1953 .

[57]  B. Strand Summation by parts for finite difference approximations for d/dx , 1994 .

[58]  R. E. Kraft,et al.  Design and performance of duct acoustic treatment , 1991 .

[59]  Sw Sjoerd Rienstra,et al.  Nonlinear asymptotic impedance model for a Helmholtz resonator liner , 2014 .

[60]  Christopher K. W. Tam,et al.  Numerical simulation of a slit resonator in a grazing flow under acoustic excitation , 2008 .

[61]  Friedrich Bake,et al.  The acoustic-particle velocity in the vicinity of a liner: a PIV-CAA comparison , 2013 .

[62]  Michael T. Heath,et al.  Energy stable numerical methods for hyperbolic partial differential equations using overlapping domain decomposition , 2012, J. Comput. Phys..

[63]  Paul E. Slaboch,et al.  Fluid mechanics of the flow-excited Helmholtz resonator , 2009, Journal of Fluid Mechanics.

[64]  D. Rockwell,et al.  Self-excited oscillations of turbulent inflow along a perforated plate , 2003 .

[65]  Estelle Piot,et al.  Liner impedance eduction technique based on velocity fields , 2012 .

[66]  A Avraham Hirschberg,et al.  Quasi-steady acoustic response of wall perforations subject to a grazing-bias flow combination , 2013 .

[67]  Thierry Schuller,et al.  Optimal and off-design operations of acoustic dampers using perforated plates backed by a cavity , 2013 .

[68]  Mohamed Taktak,et al.  An indirect method for the characterization of locally reacting liners. , 2010, The Journal of the Acoustical Society of America.

[69]  Daniel J. Bodony,et al.  Analysis of sponge zones for computational fluid mechanics , 2006, J. Comput. Phys..

[70]  R. E. Falco,et al.  Vortical motion contributions to stress transport in turbulent boundary layers , 1994 .

[71]  Alan S. Hersh,et al.  Helmholtz Resonator Impedance Model, Part 1: Nonlinear Behavior , 2003 .

[72]  Ann P. Dowling,et al.  Sound absorption by a screen with a regular array of slits , 1992 .

[73]  A. Dowling,et al.  The absorption of sound by perforated linings , 1990, Journal of Fluid Mechanics.

[74]  Willie R. Watson,et al.  A Computational and Experimental Study of Resonators in Three Dimensions , 2009 .