An astronomical institute’s perspective on meeting the challenges of the climate crisis

[1]  M. J. Seidel,et al.  Measuring carbon emissions at the Canada–France–Hawaii Telescope , 2020, Nature Astronomy.

[2]  K. Jahnke,et al.  The carbon footprint of large astronomy meetings , 2020, Nature Astronomy.

[3]  Simon Portegies Zwart,et al.  The ecological impact of high-performance computing in astrophysics , 2020, Nature Astronomy.

[4]  Myles Allen,et al.  An analysis of ways to decarbonize conference travel after COVID-19 , 2020, Nature.

[5]  Joelle Pineau,et al.  Towards the Systematic Reporting of the Energy and Carbon Footprints of Machine Learning , 2020, ArXiv.

[6]  M. Murphy,et al.  The imperative to reduce carbon emissions in astronomy , 2019, Nature Astronomy.

[7]  Nicolas B. Cowan,et al.  Astronomy in a Low-Carbon Future , 2019, 1910.01272.

[8]  Laura-Diana Radu,et al.  Green Cloud Computing: A Literature Survey , 2017, Symmetry.

[9]  J. Blau The Paris Agreement , 2017 .

[10]  A. Savaresi The Paris Agreement: a new beginning? , 2016 .

[11]  N. Nakicenovic,et al.  Summary for policymakers , 1963 .

[12]  Swedish Environmental Submitted under the United Nations Framework Convention on Climate Change and the Kyoto Protocol , 2010 .

[13]  E. Rykoff,et al.  Low-Energy Astrophysics: Stimulating the Reduction of Energy Consumption in the Next Decade , 2009, 0903.3384.

[14]  L. London Climate Change and Human Health. Risks and Responses , 2008 .

[15]  P. Epstein,et al.  Climate change and human health. , 1996, The New England journal of medicine.

[16]  R. Schroeder LITERATURE SURVEY , 1981 .