Multi–regime models for nonlinear nonstationary time series

Nonlinear nonstationary models for time series are considered, where the series is generated from an autoregressive equation whose coefficients change both according to time and the delayed values of the series itself, switching between several regimes. The transition from one regime to the next one may be discontinuous (self-exciting threshold model), smooth (smooth transition model) or continuous linear (piecewise linear threshold model). A genetic algorithm for identifying and estimating such models is proposed, and its behavior is evaluated through a simulation study and application to temperature data and a financial index.

[1]  Timo Teräsvirta,et al.  Modelling Economic Relationships with Smooth Transition Regressions , 1996 .

[2]  B. G. Quinn,et al.  The determination of the order of an autoregression , 1979 .

[3]  Jianqing Fan,et al.  Functional-Coefficient Regression Models for Nonlinear Time Series , 2000 .

[4]  P. Perron,et al.  Estimating and testing linear models with multiple structural changes , 1995 .

[5]  James D. Hamilton A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle , 1989 .

[6]  Hernando Ombao,et al.  Autoregressive processes with data‐driven regime switching , 2009 .

[7]  Carlo Gaetan,et al.  Subset ARMA Model Identification Using Genetic Algorithms , 2000 .

[8]  Marine Carrasco,et al.  Misspecified Structural Change, Threshold, and Markov-switching models , 2002 .

[9]  Thomas C.M. Lee,et al.  Information and Complexity in Statistical Modeling , 2008 .

[10]  Michele Brunetti,et al.  HISTALP—historical instrumental climatological surface time series of the Greater Alpine Region , 2007 .

[11]  Pierre Perron,et al.  Dealing with Structural Breaks , 2005 .

[12]  Roger L. Wainwright,et al.  Applying Genetic Algorithms to Outlier Detection , 1995, ICGA.

[13]  H. Tong Non-linear time series. A dynamical system approach , 1990 .

[14]  M. B. Priestley,et al.  Non-linear and non-stationary time series analysis , 1990 .

[15]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[16]  S. Chatterjee,et al.  Genetic algorithms and their statistical applications: an introduction , 1996 .

[17]  Jorma Rissanen,et al.  Information and Complexity in Statistical Modeling , 2006, ITW.

[18]  Todd E. Clark,et al.  Using Out-of-Sample Mean Squared Prediction Errors to Test the Martingale Difference Hypothesis , 2004 .

[19]  T. Teräsvirta Specification, Estimation, and Evaluation of Smooth Transition Autoregressive Models , 1994 .

[20]  A. Timmermann,et al.  Market timing and return prediction under model instability , 2002 .

[21]  J.T. Alander,et al.  On optimal population size of genetic algorithms , 1992, CompEuro 1992 Proceedings Computer Systems and Software Engineering.

[22]  Gary Koop,et al.  Are Apparent Findings of Nonlinearity Due to Structural Instability in Economic Time Series , 2001 .

[23]  Víctor M. Guerrero Time‐series analysis supported by power transformations , 1993 .

[24]  Michele Brunetti,et al.  The early instrumental warm-bias: a solution for long central European temperature series 1760–2007 , 2010 .

[25]  Timo Teräsvirta,et al.  Testing the constancy of regression parameters against continuous structural change , 1994 .

[26]  Fabio Spagnolo,et al.  Contemporaneous Threshold Autoregressive Models: Estimation, Testing and Forecasting , 2006 .

[27]  R. Tsay Nonlinearity tests for time series , 1986 .

[28]  Berlin Wu,et al.  Using genetic algorithms to parameters (d,r) estimation for threshold autoregressive models , 2002 .

[29]  Dongcheol Kim,et al.  Structural change and time dependence in models of stock returns , 1999 .

[30]  P. Perron,et al.  Modeling and forecasting stock return volatility using a random level shift model , 2010 .

[31]  D. M. Keenan,et al.  A Tukey nonadditivity-type test for time series nonlinearity , 1985 .

[32]  T. Teräsvirta,et al.  Time-Varying Smooth Transition Autoregressive Models , 2003 .

[33]  Ruey S. Tsay,et al.  Functional-Coefficient Autoregressive Models , 1993 .

[34]  Lon-Mu Liu,et al.  FORECASTING AND TIME SERIES ANALYSIS USING THE SCA STATISTICAL SYSTEM , 1994 .

[35]  R. Baragona,et al.  Genetic algorithms for building double threshold generalized autoregressive conditional heteroscedastic models of time series , 2006 .

[36]  Francesco Battaglia,et al.  Fitting piecewise linear threshold autoregressive models by means of genetic algorithms , 2004, Comput. Stat. Data Anal..

[37]  Stephen R. Marsland,et al.  Convergence Properties of (μ + λ) Evolutionary Algorithms , 2011, AAAI.

[38]  C. Reeves Modern heuristic techniques for combinatorial problems , 1993 .

[39]  Richard A. Davis,et al.  Structural Break Estimation for Nonstationary Time Series Models , 2006 .

[40]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[41]  Francesco Battaglia,et al.  Evolutionary Statistical Procedures , 2011 .

[42]  Christian Pierdzioch,et al.  Economic and financial crises and the predictability of U.S. stock returns , 2008 .

[43]  A. Ullah,et al.  Handbook of Applied Economic Statistics , 2000 .

[44]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[45]  H. Tong,et al.  Threshold Autoregression, Limit Cycles and Cyclical Data , 1980 .

[46]  Senlin Wu,et al.  THRESHOLD VARIABLE DETERMINATION AND THRESHOLD VARIABLE DRIVEN SWITCHING AUTOREGRESSIVE MODELS , 2007 .

[47]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[48]  G. C. Tiao,et al.  Some advances in non‐linear and adaptive modelling in time‐series , 1994 .

[49]  Francesco Battaglia,et al.  Time‐varying multi‐regime models fitting by genetic algorithms , 2011 .

[50]  R. Baragona,et al.  Genetic algorithms for the identification of additive and innovation outliers in time series , 2001 .

[51]  R. Bhansali,et al.  Some properties of the order of an autoregressive model selected by a generalization of Akaike∘s EPF criterion , 1977 .