Analysis of imposing tidal dynamics to nested numerical models

[1]  J. Oliger,et al.  Theoretical and practical aspects of some initial-boundary value problems in fluid dynamics , 1976 .

[2]  P. Kloeden,et al.  Boundary Conditions for Limited-Area Forecasts , 1978 .

[3]  D. Chapman Numerical Treatment of Cross-Shelf Open Boundaries in a Barotropic Coastal Ocean Model , 1985 .

[4]  F. L. Dimet,et al.  Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects , 1986 .

[5]  Andrew F. Bennett,et al.  Inverse Methods in Physical Oceanography: Frontmatter , 1992 .

[6]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[7]  E. Palma,et al.  On the implementation of passive open boundary conditions for a general circulation model: The barotropic mode , 1998 .

[8]  W. Liu,et al.  Far-Reaching Effects of the Hawaiian Islands on the Pacific Ocean-Atmosphere System , 2001, Science.

[9]  Alexander F. Shchepetkin,et al.  Open boundary conditions for long-term integration of regional oceanic models , 2001 .

[10]  M. Dinniman,et al.  The Influence of Open versus Periodic Alongshore Boundaries on Circulation near Submarine Canyons , 2002 .

[11]  G. Egbert,et al.  Efficient Inverse Modeling of Barotropic Ocean Tides , 2002 .

[12]  P. Holloway,et al.  Model estimates of M2 internal tide energetics at the Hawaiian Ridge , 2002 .

[13]  S. Lentz,et al.  Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE , 2002 .

[14]  James C. McWilliams,et al.  A method for computing horizontal pressure‐gradient force in an oceanic model with a nonaligned vertical coordinate , 2003 .

[15]  I. Janekovic,et al.  The Adriatic Sea M2 and K1 tides by 3D model and data assimilation , 2003 .

[16]  R. Hallberg,et al.  Internal wave generation in a global baroclinic tide model , 2004 .

[17]  Alexander F. Shchepetkin,et al.  The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model , 2005 .

[18]  J. Nash,et al.  Estimating Internal Wave Energy Fluxes in the Ocean , 2005 .

[19]  R. He,et al.  Barotropic tides on the southeast New England shelf : a view from a hybrid data assimilative modeling approach , 2006 .

[20]  J. McWilliams,et al.  Evaluation and application of the ROMS 1-way embedding procedure to the central california upwelling system , 2006 .

[21]  S. G. L. Smith,et al.  Numerical and Analytical Estimates of M2 Tidal Conversion at Steep Oceanic Ridges , 2006 .

[22]  G. Egbert,et al.  Estimating Open-Ocean Barotropic Tidal Dissipation: The Hawaiian Ridge , 2006 .

[23]  W. Munk,et al.  Tales of the Venerable Honolulu Tide Gauge , 2006 .

[24]  Chris Garrett,et al.  Internal Tide Generation in the Deep Ocean , 2007 .

[25]  M. Levine,et al.  Energetics of M2 Barotropic-to-Baroclinic Tidal Conversion at the Hawaiian Islands , 2008 .

[26]  E. Blayo,et al.  Two-way embedding algorithms: a review , 2008 .

[27]  P. Oddo,et al.  Lateral open boundary conditions for nested limited area models: A scale selective approach , 2008 .

[28]  N. Balmforth,et al.  Tidal Conversion by Supercritical Topography , 2009 .

[29]  James C. McWilliams,et al.  Correction and commentary for "Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system" by Haidvogel et al., J. Comp. Phys 227, pp 3595-3624 , 2009, J. Comput. Phys..

[30]  D. Ko,et al.  Generation of internal waves by barotropic tidal flow over a steep ridge , 2010 .

[31]  K. Gurgel,et al.  The Surface Expression of Semidiurnal Internal Tides near a Strong Source at Hawaii. Part II: Interactions with Mesoscale Currents* , 2010 .

[32]  Alexander F. Shchepetkin,et al.  Procedures for offline grid nesting in regional ocean models , 2010 .