Minimum-Variance Estimation of Reentry Debris Trajectories

A minimum-variance estimator is developed for reentry debris trajectories using discrete-time multiple sensor line-of-sight measurements. An integral state model is used for the unknown drag ballistic coefe cient and lift ballistic coefe cient. An extended Kalman e lter is developed for the forward estimate and a Rauch ‐Tung‐Striebel smootherisdeveloped forthebackward estimate.Themethod istestedonnonlifting and lifting reentry trajectories that are synthesized using a high-e delity trajectory simulator. The results of this research show that reentry debris trajectoriescanbeestimatedusing theapproach developeddespitethelack ofaccuratemodelsfortheaerodynamic coefe cients.

[1]  Robert F. Stengel,et al.  Optimal nonlinear estimation for aircraft flight control in wind shear , 1996, Autom..

[2]  D. D. Mueller,et al.  Fundamentals of Astrodynamics , 1971 .

[3]  William P. Schonberg,et al.  Effect of Multi-wall System Composition on Survivability for Spacecraft Impacted by Orbital Debris , 1999 .

[4]  P. Ameline DORIS radar calibration method , 2001 .

[5]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[6]  W. E. Wagner,et al.  Re-entry filtering, prediction, and smoothing. , 1966 .

[7]  F. Regan,et al.  Dynamics of atmospheric re-entry , 1993 .

[8]  Deok-Jin Lee,et al.  Probability of Collision Error Analysis , 1999 .

[9]  H. Hartley The Modified Gauss-Newton Method for the Fitting of Non-Linear Regression Functions by Least Squares , 1961 .

[10]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[11]  A. E. Bryson,et al.  Disturbance Estimation for a STOL Transport During Landing , 1981 .

[12]  A. V. Mrstik,et al.  A track filter for reentry objects with uncertain drag , 1999 .

[13]  Robert F. Stengel,et al.  Optimal Control and Estimation , 1994 .

[14]  R. Battin An introduction to the mathematics and methods of astrodynamics , 1987 .

[15]  C. Striebel,et al.  On the maximum likelihood estimates for linear dynamic systems , 1965 .

[16]  H. O. Hartley,et al.  Exact confidence regions for the parameters in non-linear regression laws , 1964 .

[17]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[18]  P. R. Escobal,et al.  Methods of orbit determination , 1976 .