Decoherence control for high-temperature reservoirs

We investigate the decoherence control coupled to a rather general environment, i.e., without using the Markov approximation. Markovian errors generally require high-energy excitations (of the reservoir) and tend to destroy the scalability of the adiabatic quantum computation. Especially, we find that deriving optimal control using the Pontryagin maximum principle, the decoherence can be suppressed even in high-temperature reservoirs. The influences of Ohmic reservoir with Lorentz-Drude regularization are numerically studied in a two-level system under ωc ≪ ω0 condition, here ω0 is the characteristic frequency of the quantum system of interest, and ωc the cut-off frequency of Ohmic reservoir. It implies that designing some engineered reservoirs with the controlled coupling and state of the environment can slow down the decoherence rate and delay the decoherence time. Moreover, we compared the non-Markovian optimal decoherence control with the Markovian one and find that with non-Markovian the engineered artificial reservoirs are better than the Markovian approximate in controlling the decoherence of open, dissipative quantum systems.

[1]  Paolo Zanardi Stabilizing quantum information , 2000 .

[2]  Chuang,et al.  Simple quantum computer. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[3]  Kompa,et al.  Whither the future of controlling quantum phenomena? , 2000, Science.

[4]  C. Monroe,et al.  Decoherence of quantum superpositions through coupling to engineered reservoirs , 2000, Nature.

[5]  Entanglement oscillations in non-Markovian quantum channels , 2007, quant-ph/0702055.

[6]  K. Blum Density Matrix Theory and Applications , 1981 .

[7]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[8]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[9]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[10]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[11]  V. Krotov,et al.  Global methods in optimal control theory , 1993 .

[12]  París,et al.  Lindblad- and non-Lindblad-type dynamics of a quantum Brownian particle , 2004, Physical Review A.

[13]  C. Monroe,et al.  Decoherence and Decay of Motional Quantum States of a Trapped Atom Coupled to Engineered Reservoirs , 2000 .

[14]  U. Weiss Quantum Dissipative Systems , 1993 .

[15]  Jing Zhang,et al.  Maximal suppression of decoherence in Markovian quantum systems , 2005 .

[16]  Jing Zhang,et al.  Asymptotically noise decoupling for Markovian open quantum systems , 2007 .

[17]  P. Avouris,et al.  Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown , 2001, Science.

[18]  Gurvitz,et al.  Effect of measurement on the decay rate of a quantum system , 1999, Physical review letters.

[19]  D. Sugny,et al.  Time-optimal control of a two-level dissipative quantum system , 2007, 0708.3794.

[20]  Michal Horodecki,et al.  Dynamical description of quantum computing: Generic nonlocality of quantum noise , 2002 .

[21]  H. Rabitz Shaped Laser Pulses as Reagents , 2003, Science.

[22]  A. Drăgulescu,et al.  Non-Markovian qubit dynamics in a thermal field bath: Relaxation, decoherence and entanglement , 2004, quant-ph/0408084.

[23]  Seth Lloyd,et al.  ANALOG QUANTUM ERROR CORRECTION , 1998 .

[24]  B. Hu,et al.  Two-Level Atom-Field Interaction: Exact Master Equations for Non-Markovian Dynamics, Decoherence and Relaxation , 1999, quant-ph/9901078.

[25]  W. Potz,et al.  Quantum optimal control theory and dynamic coupling in the spin-boson model , 2006, cond-mat/0602497.

[26]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[27]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[28]  Pierre Meystre,et al.  Atom Optics , 2001 .

[29]  P. Hänggi,et al.  Controlling decoherence of a two-level atom in a lossy cavity , 2000, quant-ph/0003029.

[30]  Michael B. Mensky,et al.  Quantum Measurements and Decoherence , 2000 .

[31]  M. Tiersch,et al.  Non-markovian decoherence in the adiabatic quantum search algorithm , 2006, quant-ph/0608123.

[32]  C. Altafini,et al.  QUANTUM MECHANICS (GENERAL AND NONRELATIVISTIC) 2357 Controllability properties for finite dimensional quantum Markovian master equations , 2002, quant-ph/0211194.

[33]  H Rabitz,et al.  Selective Bond Dissociation and Rearrangement with Optimally Tailored, Strong-Field Laser Pulses , 2001, Science.

[34]  M. Mensky Quantum Measurements and Decoherence: Models and Phenomenology , 2010 .

[35]  M. S. Zubairy,et al.  Quantum optics: Frontmatter , 1997 .

[36]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[37]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[38]  B. M. Garraway,et al.  Nonperturbative decay of an atomic system in a cavity , 1997 .

[39]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .