The co-evolution of total density profiles and central dark matter fractions in simulated early-type galaxies

We present evidence from cosmological hydrodynamical simulations for a co-evolution of the slope of the total (dark and stellar) mass density profile, gamma (tot), and the dark matter fraction within the half-mass radius, f(DM), in early-type galaxies. The relation can be described as gamma(tot) = A f(DM) + B for all systems at all redshifts. The trend is set by the decreasing importance of gas dissipation towards lower redshifts and for more massive systems. Early-type galaxies are smaller, more concentrated, have lower f(DM) and steeper gamma(tot) at high redshifts and at lower masses for a given redshift;f(DM) and gamma(tot) are good indicators for growth by 'dry' merging. The values for A and B change distinctively for different feedback models, and this relation can be used as a test for such models. A similar correlation exists between gamma(tot) and the stellar mass surface density Sigma(*). A model with weak stellar feedback and feedback from black holes is in best agreement with observations. All simulations, independent of the assumed feedback model, predict steeper gamma(tot) and lower f(DM) at higher redshifts. While the latter is in agreement with the observed trends, the former is in conflict with lensing observations, which indicate constant or decreasing gamma(tot). This discrepancy is shown to be artificial: the observed trends can be reproduced from the simulations using observational methodology to calculate the total density slopes.

[1]  K. Dolag,et al.  The Dark Halo – Spheroid Conspiracy Reloaded: Evolution with Redshift , 2014, Proceedings of the International Astronomical Union.

[2]  Cosmology,et al.  THE SL2S GALAXY-SCALE LENS SAMPLE. III. LENS MODELS, SURFACE PHOTOMETRY, AND STELLAR MASSES FOR THE FINAL SAMPLE , 2013, 1307.4764.

[3]  J. Helly,et al.  Size evolution of normal and compact galaxies in the EAGLE simulation , 2015, 1510.05645.

[4]  R. Somerville,et al.  Galaxy formation in semi-analytic models and cosmological hydrodynamic zoom simulations , 2011, 1104.1626.

[5]  K. Dolag,et al.  THE DARK HALO—SPHEROID CONSPIRACY AND THE ORIGIN OF ELLIPTICAL GALAXIES , 2012, 1211.3420.

[6]  G. Illingworth,et al.  THE STELLAR MASS STRUCTURE OF MASSIVE GALAXIES FROM z = 0 TO z = 2.5: SURFACE DENSITY PROFILES AND HALF-MASS RADII , 2012, 1208.4363.

[7]  Timothy A. Davis,et al.  The ATLAS3D project XV: benchmark for early-type galaxies scaling relations from 260 dynamical models: mass-to-light ratio, dark matter, fundamental plane and mass plane , 2012, 1208.3522.

[8]  A. Bolton,et al.  THE SLOAN LENS ACS SURVEY. XII. EXTENDING STRONG LENSING TO LOWER MASSES , 2014, 1407.2240.

[9]  T. Treu,et al.  Massive Dark Matter Halos and Evolution of Early-Type Galaxies to z ≈ 1 , 2004, astro-ph/0401373.

[10]  Klaus Dolag,et al.  Baryon impact on the halo mass function: Fitting formulae and implications for cluster cosmology , 2015, 1502.07357.

[11]  R. D. Carvalho,et al.  Systematic variations of central mass density slopes in early-type galaxies , 2014, 1409.0538.

[12]  Simulating the metal enrichment of the intracluster medium , 2004, astro-ph/0401576.

[13]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation , 2002, astro-ph/0206393.

[14]  G. W. Pratt,et al.  Planck intermediate results: V. Pressure profiles of galaxy clusters from the Sunyaev-Zeldovich effect , 2012, 1207.4061.

[15]  H Germany,et al.  XMM-Newton observations of three poor clusters: Similarity in dark matter and entropy profiles down to low mass , 2004, astro-ph/0406366.

[16]  J. Ostriker,et al.  GRAVITATIONAL HEATING HELPS MAKE MASSIVE GALAXIES RED AND DEAD , 2009, 0903.2840.

[17]  Jeremiah P. Ostriker,et al.  THE TWO PHASES OF GALAXY FORMATION , 2010, 1010.1381.

[18]  S. Borgani,et al.  An improved SPH scheme for cosmological simulations , 2015, 1502.07358.

[19]  L. Simard,et al.  Universal IMF versus dark halo response in early-type galaxies: breaking the degeneracy with the Fundamental Plane , 2012, 1204.2825.

[20]  T. Treu,et al.  PURELY DRY MERGERS DO NOT EXPLAIN THE OBSERVED EVOLUTION OF MASSIVE EARLY-TYPE GALAXIES SINCE z ∼ 1 , 2013, 1310.3280.

[21]  S. Bamford,et al.  Galaxy And Mass Assembly (GAMA): the galaxy stellar mass function at z < 0.06 , 2011, 1111.5707.

[22]  M. Lueker,et al.  THE REDSHIFT EVOLUTION OF THE MEAN TEMPERATURE, PRESSURE, AND ENTROPY PROFILES IN 80 SPT-SELECTED GALAXY CLUSTERS , 2014, 1404.6250.

[23]  T. Treu,et al.  LUMINOUS AND DARK MATTER PROFILES FROM GALAXIES TO CLUSTERS: BRIDGING THE GAP WITH GROUP-SCALE LENSES , 2015, 1503.05282.

[24]  H. Rix,et al.  STELLAR KINEMATICS OF z ∼ 2 GALAXIES AND THE INSIDE-OUT GROWTH OF QUIESCENT GALAXIES, , 2012, 1211.3424.

[25]  N. Napolitano,et al.  The SLUGGS Survey: breaking degeneracies between dark matter, anisotropy and the IMF using globular cluster subpopulations in the giant elliptical NGC 5846 , 2014, 1401.1501.

[26]  J. Strader,et al.  The SLUGGS survey: the assembly histories of individual early-type galaxies , 2016, 1601.02597.

[27]  R. Saglia,et al.  Evolution of central dark matter of early-type galaxies up to z ∼ 0.8 , 2014, 1409.0859.

[28]  G. Stinson,et al.  The response of dark matter haloes to elliptical galaxy formation: a new test for quenching scenarios , 2015, 1506.06760.

[29]  Marijn Franx,et al.  ON THE ROBUSTNESS OF z = 0–1 GALAXY SIZE MEASUREMENTS THROUGH MODEL AND NON-PARAMETRIC FITS , 2013, 1302.6240.

[30]  V. Rubin,et al.  Rotation curves for spiral galaxies in clusters. II. Variations as a function of cluster position , 1988 .

[31]  J. Strader,et al.  SMALL SCATTER AND NEARLY ISOTHERMAL MASS PROFILES TO FOUR HALF-LIGHT RADII FROM TWO-DIMENSIONAL STELLAR DYNAMICS OF EARLY-TYPE GALAXIES , 2015, 1504.00075.

[32]  J. Ostriker,et al.  How do minor mergers promote inside-out growth of ellipticals, transforming the size, density profile and dark matter fraction? , 2012, 1206.5004.

[33]  K. Dolag,et al.  Disk Galaxies in the Magneticum Pathfinder Simulations , 2014, Proceedings of the International Astronomical Union.

[34]  D. Weinberg,et al.  Cosmological Simulations with TreeSPH , 1995, astro-ph/9509107.

[35]  S. Borgani,et al.  Chemical enrichment of galaxy clusters from hydrodynamical simulations , 2007, 0705.1921.

[36]  Cosmology,et al.  THE SL2S GALAXY-SCALE LENS SAMPLE. IV. THE DEPENDENCE OF THE TOTAL MASS DENSITY PROFILE OF EARLY-TYPE GALAXIES ON REDSHIFT, STELLAR MASS, AND SIZE , 2013, 1307.4759.

[37]  A. Bolton,et al.  THE SLOAN LENS ACS SURVEY. X. STELLAR, DYNAMICAL, AND TOTAL MASS CORRELATIONS OF MASSIVE EARLY-TYPE GALAXIES , 2010, 1007.2880.

[38]  V. Belokurov,et al.  ELLIPTICAL GALAXY MASSES OUT TO FIVE EFFECTIVE RADII: THE REALM OF DARK MATTER , 2011, 1110.0833.

[39]  M. Lombardi,et al.  Dark matter fraction of low-mass cluster members probed by galaxy-scale strong lensing , 2016, 1602.02753.

[40]  P. Lopes,et al.  Spheroid's Panchromatic Investigation in Different Environmental Regions (SPIDER) - I. Sample and galaxy parameters in the grizYJHK wavebands , 2009, 0912.4547.

[41]  R. Bender,et al.  Dynamical modelling of luminous and dark matter in 17 Coma early-type galaxies , 2007, 0709.0691.

[42]  J. Ostriker,et al.  The stellar accretion origin of stellar population gradients in massive galaxies at large radii , 2014, 1410.2244.

[43]  T. Tal,et al.  THE RELATION BETWEEN COMPACT, QUIESCENT HIGH-REDSHIFT GALAXIES AND MASSIVE NEARBY ELLIPTICAL GALAXIES: EVIDENCE FOR HIERARCHICAL, INSIDE-OUT GROWTH , 2009, 0903.2044.

[44]  J. Ostriker,et al.  FORMING EARLY-TYPE GALAXIES IN ΛCDM SIMULATIONS. I. ASSEMBLY HISTORIES , 2012, 1202.3441.

[45]  K. Dolag,et al.  CONNECTING ANGULAR MOMENTUM AND GALACTIC DYNAMICS: THE COMPLEX INTERPLAY BETWEEN SPIN, MASS, AND MORPHOLOGY , 2015, 1503.03501.

[46]  C. Martin Mapping Large-Scale Gaseous Outflows in Ultraluminous Galaxies with Keck II ESI Spectra: Variations in Outflow Velocity with Galactic Mass , 2004, astro-ph/0410247.

[47]  J. Silk,et al.  AGN-driven quenching of star formation: morphological and dynamical implications for early-type galaxies , 2013, 1301.3092.

[48]  R. Mandelbaum,et al.  Galaxy density profiles and shapes – I. Simulation pipeline for lensing by realistic galaxy models , 2008, 0808.2493.

[49]  S. Courteau,et al.  ON THE GLOBAL MASS DISTRIBUTION IN DISK GALAXIES , 2015, 1502.04709.

[50]  S. White,et al.  Effects of supernova feedback on the formation of galaxy discs , 2008, 0804.3795.

[51]  O. Gerhard,et al.  Using nmagic to probe the dark matter halo and orbital structure of the X-ray bright, massive elliptical galaxy, NGC 4649 , 2011, 1105.3478.

[52]  Institute for Astronomy,et al.  Outflows in Infrared-Luminous Starbursts at z < 0.5. II. Analysis and Discussion , 2005, astro-ph/0506611.

[53]  S. White,et al.  Why stellar feedback promotes disc formation in simulated galaxies , 2014, 1403.6124.

[54]  J. Ostriker,et al.  Relaxation and stripping – the evolution of sizes, dispersions and dark matter fractions in major and minor mergers of elliptical galaxies , 2012, 1206.1597.

[55]  J. Schaye,et al.  The effect of photoionization on the cooling rates of enriched, astrophysical plasmas , 2008, 0807.3748.

[56]  G. Brammer,et al.  SPECTROSCOPIC CONFIRMATION OF AN ULTRAMASSIVE AND COMPACT GALAXY AT z = 3.35: A DETAILED LOOK AT AN EARLY PROGENITOR OF LOCAL GIANT ELLIPTICALS , 2014, 1406.0002.

[57]  Jeremiah P. Ostriker,et al.  THE COSMOLOGICAL SIZE AND VELOCITY DISPERSION EVOLUTION OF MASSIVE EARLY-TYPE GALAXIES , 2011, 1106.5490.

[58]  B. Milvang-Jensen,et al.  PROBING THE TRUNCATION OF GALAXY DARK MATTER HALOS IN HIGH-DENSITY ENVIRONMENTS FROM HYDRODYNAMICAL N-BODY SIMULATIONS , 2007, 0706.3149.

[59]  E. Choi,et al.  The impact of mechanical AGN feedback on the formation of massive early-type galaxies , 2014, 1403.1257.

[60]  Andreas Burkert,et al.  Cosmological simulations of black hole growth: AGN luminosities and downsizing , 2013, 1308.0333.

[61]  S. Toft,et al.  DEEP ABSORPTION LINE STUDIES OF QUIESCENT GALAXIES AT z ∼ 2: THE DYNAMICAL-MASS–SIZE RELATION AND FIRST CONSTRAINTS ON THE FUNDAMENTAL PLANE , 2012, 1204.3099.

[62]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[63]  T. D. Matteo,et al.  Modelling feedback from stars and black holes in galaxy mergers , 2004, astro-ph/0411108.

[64]  L. Hernquist,et al.  The diverse evolutionary paths of simulated high-z massive, compact galaxies to z = 0 , 2015, 1507.02291.

[65]  Michaela Hirschmann,et al.  A refined sub-grid model for black hole accretion and AGN feedback in large cosmological simulations , 2014, 1409.3221.

[66]  S. White,et al.  The EAGLE simulations of galaxy formation: calibration of subgrid physics and model variations , 2015, 1501.01311.

[67]  S. Borgani,et al.  Simulating the effect of active galactic nuclei feedback on the metal enrichment of galaxy clusters , 2009, 0909.0664.

[68]  P. Dokkum,et al.  A high stellar velocity dispersion for a compact massive galaxy at redshift z = 2.186 , 2009, Nature.

[69]  Marijn Franx,et al.  TIGHT CORRELATIONS BETWEEN MASSIVE GALAXY STRUCTURAL PROPERTIES AND DYNAMICS: THE MASS FUNDAMENTAL PLANE WAS IN PLACE BY z ∼ 2 , 2013, 1309.6638.

[70]  R. Somerville,et al.  CONSTRAINTS ON THE RELATIONSHIP BETWEEN STELLAR MASS AND HALO MASS AT LOW AND HIGH REDSHIFT , 2009, 0903.4682.

[71]  S. White,et al.  Galaxy growth in the concordance ΛCDM cosmology , 2007, 0708.1814.

[72]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.

[73]  K. Dolag,et al.  Rise and fall of radio haloes in simulated merging galaxy clusters , 2012, 1211.3337.

[74]  P. Madau,et al.  Radiative Transfer in a Clumpy Universe. II. The Ultraviolet Extragalactic Background , 1995, astro-ph/9509093.

[75]  R. Davies,et al.  The ATLAS3D project - XXV. Two-dimensional kinematic analysis of simulated galaxies and the cosmological origin of fast and slow rotators , 2013, 1311.0284.

[76]  V. Springel,et al.  Substructures in hydrodynamical cluster simulations , 2008, 0808.3401.

[77]  Wolfgang Voges,et al.  The size distribution of galaxies in the Sloan Digital Sky Survey , 2003, astro-ph/0301527.

[78]  R. Davé,et al.  The effect of metal enrichment and galactic winds on galaxy formation in cosmological zoom simulations , 2013, 1309.2946.

[79]  D. Wake,et al.  3D-HST+CANDELS: THE EVOLUTION OF THE GALAXY SIZE–MASS DISTRIBUTION SINCE z = 3 , 2014, 1404.2844.

[80]  G. Efstathiou,et al.  Formation of Early-Type Galaxies from Cosmological Initial Conditions , 2005, astro-ph/0512235.

[81]  R. Saglia,et al.  Dynamical Family Properties and Dark Halo Scaling Relations of Giant Elliptical Galaxies , 2000, astro-ph/0012381.

[82]  D. Buote,et al.  The slope of the mass profile and the tilt of the Fundamental Plane in early-type galaxies , 2009, 0911.0678.

[83]  V. Springel,et al.  The formation of massive, compact galaxies at z = 2 in the Illustris simulation , 2014, 1411.0667.

[84]  A. Bolton,et al.  THE BOSS EMISSION-LINE LENS SURVEY. II. INVESTIGATING MASS-DENSITY PROFILE EVOLUTION IN THE SLACS+BELLS STRONG GRAVITATIONAL LENS SAMPLE , 2012, 1201.2988.

[85]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[86]  P. Marshall,et al.  THE SL2S GALAXY-SCALE LENS SAMPLE. II. COSMIC EVOLUTION OF DARK AND LUMINOUS MASS IN EARLY-TYPE GALAXIES , 2010, 1008.3167.

[87]  S. White,et al.  Galactic star formation and accretion histories from matching galaxies to dark matter haloes , 2012, 1205.5807.

[88]  T. Treu,et al.  THE DENSITY PROFILES OF MASSIVE, RELAXED GALAXY CLUSTERS. II. SEPARATING LUMINOUS AND DARK MATTER IN CLUSTER CORES , 2012, 1209.1392.

[89]  B. Oppenheimer,et al.  Mass, metal, and energy feedback in cosmological simulations , 2007, 0712.1827.

[90]  F. Vazza,et al.  Turbulent gas motions in galaxy cluster simulations: the role of smoothed particle hydrodynamics viscosity , 2005 .

[91]  The structural and scaling properties of nearby galaxy clusters. I. The universal mass profile , 2005, astro-ph/0501635.

[92]  A. Bolton,et al.  The Sloan Lens ACS Survey. III. The Structure and Formation of Early-Type Galaxies and Their Evolution since z ≈ 1 , 2006, astro-ph/0601628.

[93]  Thermal Conduction in Simulated Galaxy Clusters , 2004, astro-ph/0401470.

[94]  J. Ostriker,et al.  MINOR MERGERS AND THE SIZE EVOLUTION OF ELLIPTICAL GALAXIES , 2009, 0903.1636.