Preconditioning for modal discontinuous Galerkin methods for unsteady 3D Navier-Stokes equations

We compare different block preconditioners in the context of parallel time adaptive higher order implicit time integration using Jacobian-free Newton-Krylov (JFNK) solvers for discontinuous Galerkin (DG) discretizations of the three dimensional time dependent Navier-Stokes equations. A special emphasis of this work is the performance for a relative high number of processors, i.e. with a low number of elements on the processor. For high order DG discretizations, a particular problem that needs to be addressed is the size of the blocks in the Jacobian. Thus, we propose a new class of preconditioners that exploits the hierarchy of modal basis functions and introduces a flexible order of the off-diagonal Jacobian blocks. While the standard preconditioners 'block Jacobi' (no off-blocks) and full symmetric Gauss-Seidel (full off-blocks) are included as special cases, the reduction of the off-block order results in the new scheme ROBO-SGS. This allows us to investigate the impact of the preconditioner's sparsity pattern with respect to the computational performance. Since the number of iterations is not well suited to judge the efficiency of a preconditioner, we additionally consider CPU time for the comparisons. We found that both block Jacobi and ROBO-SGS have good overall performance and good strong parallel scaling behavior.

[1]  Jinhee Jeong,et al.  On the identification of a vortex , 1995, Journal of Fluid Mechanics.

[2]  Francesco Bassi,et al.  Optimal Runge-Kutta smoothers for the p-multigrid discontinuous Galerkin solution of the 1D Euler equations , 2011, J. Comput. Phys..

[3]  V. N. Venkatakrishnan,et al.  Implicit Solvers for Unstructured Meshes , 1993 .

[4]  H. van der Ven,et al.  h-Multigrid for space-time discontinuous Galerkin discretizations of the compressible Navier-Stokes equations , 2007, J. Comput. Phys..

[5]  Antony Jameson,et al.  A hybrid multilevel method for high-order discretization of the Euler equations on unstructured meshes , 2010, J. Comput. Phys..

[6]  Dana A. Knoll,et al.  Comparison of standard and matrix-free implementations of several Newton-Krylov solvers , 1994 .

[7]  Jan S. Hesthaven,et al.  Application of implicit-explicit high order Runge-Kutta methods to discontinuous-Galerkin schemes , 2007, J. Comput. Phys..

[8]  M. Y. Hussaini,et al.  An efficient implicit discontinuous spectral Galerkin method , 2001 .

[9]  Gustaf Söderlind,et al.  Evaluating numerical ODE/DAE methods, algorithms and software , 2006 .

[10]  R. Dembo,et al.  INEXACT NEWTON METHODS , 1982 .

[11]  Claus-Dieter Munz,et al.  Polymorphic nodal elements and their application in discontinuous Galerkin methods , 2009, J. Comput. Phys..

[12]  David L. Darmofal,et al.  p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations , 2005 .

[13]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[14]  Per-Olof Persson,et al.  The Compact Discontinuous Galerkin (CDG) Method for Elliptic Problems , 2007, SIAM J. Sci. Comput..

[15]  Dimitri J. Mavriplis,et al.  High-order discontinuous Galerkin methods using an hp-multigrid approach , 2006, J. Comput. Phys..

[16]  Laslo T. Diosady,et al.  Preconditioning methods for discontinuous Galerkin solutions of the Navier-Stokes equations , 2009, J. Comput. Phys..

[17]  Todd A. Oliver Multigrid Solution for High-Order Discontinuous Galerkin Discretizations of the Compressible Navier-Stokes Equations , 2004 .

[18]  Ning Qin,et al.  A matrix-free preconditioned Newton/GMRES method for unsteady Navier-Stokes solutions , 2000 .

[19]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[20]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[21]  Claude Marmignon,et al.  Time Implicit High-Order Discontinuous Galerkin Method with Reduced Evaluation Cost , 2012, SIAM J. Sci. Comput..

[22]  Dimitri J. Mavriplis,et al.  Higher order time integration schemes for the unsteady Navier-Stokes equations on unstructured meshes , 2002 .

[23]  Antony Jameson,et al.  Facilitating the Adoption of Unstructured High-Order Methods Amongst a Wider Community of Fluid Dynamicists , 2011 .

[24]  Per-Olof Persson,et al.  Newton-GMRES Preconditioning for Discontinuous Galerkin Discretizations of the Navier--Stokes Equations , 2008, SIAM J. Sci. Comput..

[25]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[26]  Philipp Birken,et al.  Solving Nonlinear Systems Inside Implicit Time Integration Schemes for Unsteady Viscous Flows , 2013 .

[27]  Claus-Dieter Munz,et al.  A Discontinuous Galerkin Scheme based on a Space-Time Expansion II. Viscous Flow Equations in Multi Dimensions , 2008, J. Sci. Comput..

[28]  Claus-Dieter Munz,et al.  An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations , 2008, J. Comput. Phys..

[29]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .

[30]  Davis A. Kopriva,et al.  Computation of electromagnetic scattering with a non‐conforming discontinuous spectral element method , 2002 .

[31]  Karline Soetaert,et al.  Solving Ordinary Differential Equations in R , 2012 .

[32]  S. Rebay,et al.  High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations , 1997 .

[33]  Vít Dolejší,et al.  A semi-implicit discontinuous Galerkin finite element method for the numerical solution of inviscid compressible flow , 2004 .

[34]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[35]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[36]  Claus-Dieter Munz,et al.  A contribution to the construction of diffusion fluxes for finite volume and discontinuous Galerkin schemes , 2007, J. Comput. Phys..

[37]  Chunlei Liang,et al.  A p-Multigrid spectral difference method for viscous compressible flow using 2D quadrilateral meshes , 2009 .

[38]  P. Tesini,et al.  High‐order accurate p‐multigrid discontinuous Galerkin solution of the Euler equations , 2009 .

[39]  Homer F. Walker,et al.  Choosing the Forcing Terms in an Inexact Newton Method , 1996, SIAM J. Sci. Comput..

[40]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[41]  Claus-Dieter Munz,et al.  Explicit Discontinuous Galerkin methods for unsteady problems , 2012 .

[42]  Andreas Meister,et al.  Efficient preconditioning of linear systems arising from the discretization of hyperbolic conservation laws , 2001, Adv. Comput. Math..