Self-Supported Amorphous SnO2/TiO2 Nanocomposite Films with Improved Electrochemical Performance for Lithium-Ion Batteries

[1]  Yue Zhu,et al.  Achieving High-Energy-High-Power Density in a Flexible Quasi-Solid-State Sodium Ion Capacitor. , 2016, Nano letters.

[2]  Changchao Jia,et al.  Anatase/rutile-TiO2 hollow hierarchical architecture modified by SnO2 toward efficient lithium storage , 2018 .

[3]  Hongsen Li,et al.  A Nanocrystalline Fe2O3 Film Anode Prepared by Pulsed Laser Deposition for Lithium-Ion Batteries , 2018, Nanoscale Research Letters.

[4]  Xiaodong Zhu,et al.  Elaborate synthesis of black tin oxide-black titanium oxide core-shell nanotubes for ultrastable and fast lithium storage. , 2018, Chemical communications.

[5]  Xinlu Li,et al.  Graphene nanoribbons wrapping double nanoshells of SnO2@TiO2 for high lithium storage , 2016 .

[6]  Li Yang,et al.  Fabrication of three-dimensional carbon coating for SnO2/TiO2 hybrid anode material of lithium-ion batteries , 2018, Electrochimica Acta.

[7]  Hui Xiong,et al.  Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries , 2011 .

[8]  Yongfu Zhu,et al.  SnO2 nanoparticles embedded in 3D nanoporous/solid copper current collectors for high-performance reversible lithium storage , 2014 .

[9]  Lili Xing,et al.  Core–shell SnO2@TiO2–B nanowires as the anode of lithium ion battery with high capacity and rate capability , 2014 .

[10]  J. Rogers,et al.  Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates , 2008, Nature.

[11]  Ying Wang,et al.  A Nanocrystalline NiO Thin-Film Electrode Prepared by Pulsed Laser Ablation for Li-Ion Batteries , 2002 .

[12]  J. Tarascon,et al.  V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. , 2011, Journal of the American Chemical Society.

[13]  Lynden A. Archer,et al.  Designed Synthesis of Coaxial SnO2@carbon Hollow Nanospheres for Highly Reversible Lithium Storage , 2009 .

[14]  Jiongtian Liu,et al.  Synthesis and electrochemical performance of double shell SnO2@amorphous TiO2 spheres for lithium ion battery application , 2017 .

[15]  Xiaodong Huang,et al.  Symmetrical Sandwich-Structured SiN/Si/SiN Composite for Lithium-Ion Battery Anode with Improved Cyclability and Rate Capacity , 2018 .

[16]  M. P. Paranthaman,et al.  Mesoporous TiO2–B Microspheres with Superior Rate Performance for Lithium Ion Batteries , 2011, Advanced materials.

[17]  Lianzhou Wang,et al.  Titanium oxide nanosheets: graphene analogues with versatile functionalities. , 2014, Chemical reviews.

[18]  T. Brousse,et al.  Thin‐Film Crystalline SnO2‐Lithium Electrodes , 1998 .

[19]  Z. Zuo,et al.  Ultrathin Graphdiyne Nanosheets Grown In Situ on Copper Nanowires and Their Performance as Lithium-Ion Battery Anodes. , 2018, Angewandte Chemie.

[20]  S. De Gendt,et al.  Investigation of the Li-Ion Insertion Mechanism for Amorphous and Anatase TiO2Thin-Films , 2019, Journal of The Electrochemical Society.

[21]  Peng Zhou,et al.  Ultrafast, Highly Reversible, and Cycle‐Stable Lithium Storage Boosted by Pseudocapacitance in Sn‐Based Alloying Anodes , 2017, Advanced materials.

[22]  Jiulin Wang,et al.  Nanosheet‐Constructed Porous TiO2–B for Advanced Lithium Ion Batteries , 2012, Advanced materials.

[23]  Peng Dong,et al.  Tailoring multi-layer architectured FeS2@C hybrids for superior sodium-, potassium- and aluminum-ion storage , 2019, Energy Storage Materials.

[24]  Ang Li,et al.  SnO2/TiO2 nanocomposites embedded in porous carbon as a superior anode material for lithium-ion batteries , 2017 .

[25]  Rong Huang,et al.  HF-free synthesis of anatase TiO2 nanosheets with largely exposed and clean {001} facets and their enhanced rate performance as anodes of lithium-ion battery. , 2014, ACS applied materials & interfaces.

[26]  Wenping Sun,et al.  Spatially-confined lithiation–delithiation in highly dense nanocomposite anodes towards advanced lithium-ion batteries , 2015 .

[27]  T. Brousse,et al.  High‐Resolution Electron Microscopy Investigation of Capacity Fade in SnO2 Electrodes for Lithium‐Ion Batteries , 1999 .

[28]  Z. Su,et al.  Controlled synthesis of mesoporous hollow SnO2 nanococoons with enhanced lithium storage capability , 2015 .

[29]  Yan Wang,et al.  Simple Synthesis of Carbon/Tin Oxide Composite as Anodes for Lithium-Ion Batteries , 2011 .

[30]  Tae Gwang Yun,et al.  Incorporation of amorphous TiO2 into one-dimensional SnO2 nanostructures as superior anodes for lithium-ion batteries , 2018, Journal of Power Sources.

[31]  Bruno Scrosati,et al.  Review—Advances in Anode and Electrolyte Materials for the Progress of Lithium-Ion and beyond Lithium-Ion Batteries , 2015 .

[32]  Seong‐Hyeon Hong,et al.  SnO2@TiO2 double-shell nanotubes for a lithium ion battery anode with excellent high rate cyclability. , 2013, Nanoscale.

[33]  Jinbao Zhao,et al.  Self-organized TiO2 network decorated with SnO2 nanoparticles as an anode for lithium-ion batteries , 2018, Journal of Alloys and Compounds.

[34]  X. Lou,et al.  Hierarchical tubular structures constructed from ultrathin TiO2(B) nanosheets for highly reversible lithium storage , 2015 .

[35]  R. Hu,et al.  Sn@SnOx/C nanocomposites prepared by oxygen plasma-assisted milling as cyclic durable anodes for lithium ion batteries , 2013 .

[36]  X. Lou,et al.  Formation of Hierarchical Cu‐Doped CoSe2 Microboxes via Sequential Ion Exchange for High‐Performance Sodium‐Ion Batteries , 2018, Advanced materials.

[37]  Hua Zhang,et al.  Highly stable and reversible lithium storage in SnO2 nanowires surface coated with a uniform hollow shell by atomic layer deposition. , 2014, Nano letters.

[38]  Diffusion and ionic conduction in nanocrystalline ceramics , 2003 .

[39]  Yong Li,et al.  Amorphous Fe2O3 as a high-capacity, high-rate and long-life anode material for lithium ion batteries , 2014 .

[40]  Seong‐Hyeon Hong,et al.  TiO2@SnO2@TiO2 triple-shell nanotube anode for high-performance lithium-ion batteries , 2017, Journal of Solid State Electrochemistry.

[41]  Zhongqiang Shan,et al.  Submicron-sized mesoporous anatase TiO2 beads with trapped SnO2 for long-term, high-rate lithium storage , 2015 .

[42]  Yong Yan,et al.  The effects of confinement on TiO2@SnO2@TiO2 hollow spheres for high reversible lithium storage capacity , 2019, Journal of Alloys and Compounds.

[43]  N. Bahlawane,et al.  Abnormal behaviors in electrical transport properties of cobalt-doped tin oxide thin films , 2012 .

[44]  F. Du,et al.  Improvements in the electrochemical kinetic properties and rate capability of anatase titanium dioxide nanoparticles by nitrogen doping. , 2014, ACS applied materials & interfaces.

[45]  X. Lou,et al.  SnO₂-based nanomaterials: synthesis and application in lithium-ion batteries. , 2013, Small.

[46]  Yichun Liu,et al.  SnO2 nanostructures-TiO2 nanofibers heterostructures: controlled fabrication and high photocatalytic properties. , 2009, Inorganic chemistry.

[47]  D. Wexler,et al.  SnO2 nanocrystals on self-organized TiO2 nanotube array as three-dimensional electrode for lithium ion microbatteries , 2010 .

[48]  Yong Li,et al.  Rational design of metal oxide nanocomposite anodes for advanced lithium ion batteries , 2015 .

[49]  Min Gyu Kim,et al.  Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries , 2009 .

[50]  N. Rolland,et al.  Sputtered Titanium Nitride: A Bifunctional Material for Li-Ion Microbatteries , 2015 .

[51]  Facile synthesis of ultrafine carbon-coated SnO 2 nanoparticles for high-performance reversible lithium storage , 2013 .

[52]  S. Hirano,et al.  Facile fabrication of robust TiO 2 @SnO 2 @C hollow nanobelts for outstanding lithium storage , 2018 .

[53]  C. Liang,et al.  Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium–sulfur batteries , 2017, Nature Communications.

[54]  Jaephil Cho,et al.  Etched graphite with internally grown Si nanowires from pores as an anode for high density Li-ion batteries. , 2013, Nano letters.

[55]  Maoyong Zhi,et al.  Enhanced Electrochromic Performance of Mesoporous Titanium Dioxide/Reduced Graphene Oxide Nanocomposite Film Prepared by Electrophoresis Deposition , 2018 .

[56]  Yang Liu,et al.  Auto-adjustment of structure and SnO2 content of SnO2/TiO2 microspheres for lithium-ion batteries , 2019, Chemical Engineering Journal.

[57]  Ya‐Xia Yin,et al.  A robust composite of SnO2 hollow nanospheres enwrapped by graphene as a high-capacity anode material for lithium-ion batteries , 2012 .

[58]  Qiong Wu,et al.  Molecular Engineering of Monodisperse SnO2 Nanocrystals Anchored on Doped Graphene with High‐Performance Lithium/Sodium‐Storage Properties in Half/Full Cells , 2018, Advanced Energy Materials.

[59]  R. Hu,et al.  The fast filling of nano-SnO2 in CNTs by vacuum absorption: a new approach to realize cyclic durable anodes for lithium ion batteries. , 2013, Nanoscale.

[60]  Limin Wang,et al.  Facile fabrication of SnO2@TiO2 core–shell structures as anode materials for lithium-ion batteries , 2016 .

[61]  Shandong Li,et al.  CoO-Co nanocomposite anode with enhanced electrochemical performance for lithium-ion batteries , 2017 .

[62]  Qing Zhang,et al.  A multilayer Si/CNT coaxial nanofiber LIB anode with a high areal capacity , 2014 .

[63]  Chenghao Yang,et al.  Enabling a highly reversible conversion reaction in a lithiated nano-SnO2 film coated with Al2O3 by atomic layer deposition , 2018 .

[64]  Yu‐Guo Guo,et al.  Binding SnO2 Nanocrystals in Nitrogen‐Doped Graphene Sheets as Anode Materials for Lithium‐Ion Batteries , 2013, Advanced materials.

[65]  Yu Huang,et al.  Functionalized Graphene Hydrogel‐Based High‐Performance Supercapacitors , 2013, Advanced materials.

[66]  Xiaogang Han,et al.  3D‐Printed All‐Fiber Li‐Ion Battery toward Wearable Energy Storage , 2017 .

[67]  John Wang,et al.  Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles , 2007 .

[68]  Song-Zhu Kure-Chu,et al.  Nanoporous Sn-SnO2-TiO2 Composite Films Electrodeposited on Cu Sheets as Anode Materials for Lithium-Ion Batteries , 2015 .

[69]  Huanwen Wang,et al.  High-energy flexible quasi-solid-state lithium-ion capacitors enabled by a freestanding rGO-encapsulated Fe3O4 nanocube anode and a holey rGO film cathode. , 2018, Nanoscale.

[70]  Zaiping Guo,et al.  Highly uniform TiO2/SnO2/carbon hybrid nanofibers with greatly enhanced lithium storage performance , 2013 .