Technical Development of Raman Spectroscopy: From Instrumental to Advanced Combined Technologies

Abstract Raman-based techniques have developed into excellent analytical tools in various research fields, primarily due to their noninvasive sampling capability, minimal sample preparation, and short analysis time. Major improvements in lasers, spectrometers, detectors, and holographic optical components have made Raman spectroscopy an effective tool for analyzing natural and synthetic materials. This article presents a short introduction to Raman spectroscopy and several recently related advances, including, Fourier transform (FT) Raman spectroscopy, micro-Raman spectroscopy, Raman sensing, and stand-off Raman spectroscopy techniques. Other topics discussed in this article are the importance of its combination with laser-induced breakdown spectroscopy (LIBS) and laser-induced fluorescence (LIF).

[1]  Roberta Fantoni,et al.  Luminescence from pigments and resins for oil paintings induced by laser excitation , 1998 .

[2]  K. S. Krishnan,et al.  A New Type of Secondary Radiation , 1928, Nature.

[3]  R. McCreery,et al.  Evaluation of a diode laser/charge coupled device spectrometer for near-infrared Raman spectroscopy , 1989 .

[4]  Martin Hilchenbach,et al.  Remote Raman spectroscopy as a prospective tool for planetary surfaces , 2004 .

[5]  P Vandenabeele,et al.  A new instrument adapted to in situ Raman analysis of objects of art , 2004, Analytical and bioanalytical chemistry.

[6]  Robin J. H. Clark,et al.  Raman spectroscopic library of natural and synthetic pigments (pre- ≈ 1850 AD) , 1997 .

[7]  David A. Cremers,et al.  Characterization of Laser-Induced Breakdown Spectroscopy (LIBS) for Application to Space Exploration , 2000 .

[8]  S. Asher,et al.  UV resonance Raman spectroscopy for analytical, physical, and biophysical chemistry. Part 2. , 1993, Analytical chemistry.

[9]  DEVELOPMENT OF A PROTOTYPE LASER-INDUCED BREAKDOWN SPECTROSCOPY (LIBS) INSTRUMENT WITH STAND-OFF RAMAN CAPABILITIES AS PART OF THE MARS INSTRUMENT DEVELOPMENT PROGRAM , 2000 .

[10]  Y. Gogotsi,et al.  In situ intracellular spectroscopy with surface enhanced Raman spectroscopy (SERS)-enabled nanopipettes. , 2009, ACS nano.

[11]  Stanley M. Angel,et al.  Evaluation of the performance of laser sources and fiber optic probes for in-situ Raman measurements , 1995, Other Conferences.

[12]  Rinaldo Cubeddu,et al.  Fluorescence lifetime imaging and spectroscopy as tools for nondestructive analysis of works of art. , 2004, Applied optics.

[13]  Howell G M Edwards,et al.  In-situ detection of single particles of explosive on clothing with confocal Raman microscopy. , 2009, Talanta.

[14]  J. Ma,et al.  Fiber Raman background study and its application in setting up optical fiber Raman probes. , 1996, Applied optics.

[15]  Richard E. Whipple,et al.  Standoff Detection of High Explosive Materials at 50 Meters in Ambient Light Conditions Using a Small Raman Instrument , 2005, Applied spectroscopy.

[16]  S. Squyres,et al.  Development of the Mars microbeam Raman spectrometer (MMRS) , 2003 .

[17]  H. G. Schulze,et al.  Rational design of fiber-optic probes for visible and pulsed-ultraviolet resonance Raman spectroscopy. , 1996, Applied optics.

[18]  M. Natan,et al.  Surface-enhanced Raman spectroscopy and homeland security: a perfect match? , 2009, ACS nano.

[19]  Shiv k. Sharma,et al.  Remote Raman and fluorescence studies of mineral samples. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[20]  H. Edwards,et al.  A novel miniature confocal microscope/Raman spectrometer system for biomolecular analysis on future Mars missions after Antarctic trials , 2000 .

[21]  D. Chase,et al.  Fourier transform Raman spectroscopy , 1986, Journal of the American Chemical Society.

[22]  Shiv k. Sharma,et al.  New trends in telescopic remote Raman spectroscopic instrumentation. , 2007, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[23]  Shiv k. Sharma,et al.  Stand-off Raman detection using dispersive and tunable filter based systems. , 2005, Spectrochimica Acta Part A - Molecular and Biomolecular Spectroscopy.

[24]  G. Jiang,et al.  Applications of Raman-based techniques to on-site and in-vivo analysis , 2011 .

[25]  Derek A. Long,et al.  The Raman Effect , 2002 .

[26]  C. R. Quick,et al.  Venus Geochemical Analysis by Remote Raman -- Laser Induced Breakdown Spectroscopy (Raman-LIBS) , 2009 .

[27]  L. Burgio,et al.  Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. , 2001, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[28]  Shiv K. Sharma,et al.  Compact remote Raman and LIBS system for detection of minerals, water, ices, and atmospheric gases for planetary exploration , 2011, Defense + Commercial Sensing.

[29]  P. Mauchien,et al.  State of the art in time-resolved laser-induced fluorescence for actinides analysis: Applications and trends , 1997 .

[30]  Demetrios Anglos,et al.  Spectroscopic analysis using a hybrid LIBS-Raman system , 2006 .

[31]  R. McCreery,et al.  Versatile, efficient Raman sampling with fiber optics , 1984 .

[32]  Fernando Barreiro,et al.  In-Situ Raman-LIBS Combined Spectroscopy for Surface Mineral Analysis at Stand-Off Distances , 2011 .

[33]  G. D. Pitt,et al.  Engineering aspects and applications of the new Raman instrumentation , 2005 .

[34]  Stanley M. Klainer,et al.  Feasibility of using fiber optics for monitoring groundwater contaminants. II. Organic chloride optrode , 1983 .

[35]  Terence A. King,et al.  Development of a versatile confocal Raman microscope , 1996, European Conference on Biomedical Optics.

[36]  Freek Ariese,et al.  Achievements in resonance Raman spectroscopy review of a technique with a distinct analytical chemistry potential. , 2008, Analytica chimica acta.

[37]  Arthur J. Sedlacek,et al.  Ultraviolet mini-Raman lidar for stand-off, in situ identification of chemical surface contaminants , 2000 .

[38]  Guido Van Hooydonk,et al.  Analysis with micro-Raman spectroscopy of natural organic binding media and varnishes used in art , 2000 .

[39]  K. H. Fung,et al.  Stand-off Detection of Chemicals by UV Raman Spectroscopy , 2000 .

[40]  John P. Carrico Chemical-biological defense remote sensing: what's happening , 1998, Defense, Security, and Sensing.

[41]  T. Miyoshi Fluorescence from varnishes for oil paintings under N2 laser excitation , 1987 .

[42]  S. R. Ahmad,et al.  Implications of atmospheric attenuation in Raman lidar detection of pollutants , 1991 .

[43]  T. Hirschfeld,et al.  FT-Raman Spectroscopy: Development and Justification , 1986 .

[44]  P. Hendra,et al.  FOURIER TRANSFORM RAMAN SPECTROSCOPY: A COMPARISON OF ND:YAG AND LOWER-FREQUENCY SOURCES , 1996 .

[45]  Sanford A. Asher,et al.  UV Resonance Raman Spectroscopy for Analytical, Physical, and Biophysical Chemistry , 1993 .

[46]  Barry Lienert,et al.  Pulsed remote Raman system for daytime measurements of mineral spectra. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[47]  J. Rabolt,et al.  Fourier Transform Raman Spectroscopy of Long-Chain Molecules Containing Strongly Absorbing Chromophores , 1987 .

[48]  Hans D. Hallen,et al.  Raman imaging with near‐field scanning optical microscopy , 1995 .

[49]  Christopher P. McKay,et al.  Remote Raman and laser-induced fluorescence (RLIF) emission instrument for detection of mineral, organic, and biogenic materials on Mars to 100 meters radial distance , 2004, SPIE Asia-Pacific Remote Sensing.

[50]  Robert D. Sigler,et al.  Multiple-aperture telescope array with a high fill factor , 2002, SPIE Astronomical Telescopes + Instrumentation.

[51]  Jason R. Schmink,et al.  Use of Raman spectroscopy as a tool for in situ monitoring of microwave-promoted reactions , 2007, Nature Protocols.

[52]  I. W. Levin,et al.  Near-infrared Fourier transform Raman spectroscopy using fiber-optic assemblies. , 1988, Analytical chemistry.

[53]  R. C. Wiens,et al.  Combined Remote LIBS and Raman Spectroscopy of Minerals Using a Single Laser Source , 2007 .

[54]  Thomas J. Kulp,et al.  Remote-Raman Spectroscopy at Intermediate Ranges Using Low-Power cw Lasers , 1992 .

[55]  R. Das,et al.  Raman spectroscopy: Recent advancements, techniques and applications , 2011 .

[56]  Derek A. Long,et al.  The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules , 2001 .

[57]  P. Lucey,et al.  Stand-off Raman spectroscopic detection of minerals on planetary surfaces. , 2003, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[58]  Bernard Humbert,et al.  Subwavelength Raman spectroscopy , 1997 .

[59]  Bernhard Lendl,et al.  Stand-off Raman spectroscopy , 2009 .

[60]  S. Clegg,et al.  Combined remote LIBS and Raman spectroscopy at 8.6m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust. , 2007, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[61]  Sanja Potgieter-Vermaak,et al.  The application of raman spectrometry to investigate and characterize cement. Part I: A review , 2006 .

[62]  M. Allegrini,et al.  Near-Field Raman Spectroscopy and Imaging , 2007 .

[63]  S. Kinoshita,et al.  Laser-Induced Fluorescence of Oil Colours and Its Application to the Identification of Pigments in Oil Paintings , 1982 .

[64]  P. Lucey,et al.  A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation. , 2009, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[65]  Volker Deckert,et al.  Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method. , 2008, Angewandte Chemie.

[66]  M. Delhaye,et al.  The third generation of multichannel Raman spectrometers , 1984 .

[67]  C. A. Murray,et al.  Use of an unintensified charge-coupled device detector for low-light-level Raman spectroscopy , 1986 .

[68]  B. Chase,et al.  FT-Raman Spectroscopy at 1.339 Micrometers , 1994 .

[69]  James M. Williamson,et al.  Near-Infrared Raman Spectroscopy with a 783-nm Diode Laser and CCD Array Detector , 1989 .

[70]  Roger C Wiens,et al.  Joint analyses by laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy at stand-off distances. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[71]  Robin J. H. Clark,et al.  Raman microscopy in archaeological science , 2004 .

[72]  Richard P Van Duyne,et al.  Resonance Raman and surface- and tip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions. , 2010, Chemical Society reviews.

[73]  Jeunghwan Choi,et al.  Detection of nutrient elements and contamination by pesticides in spinach and rice samples using laser-induced breakdown spectroscopy (LIBS). , 2012, Journal of agricultural and food chemistry.

[74]  N. Gupta,et al.  AOTF Raman spectrometer for remote detection of explosives. , 2000, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.