“Radio-oncomics”

IntroductionRadiomics, a recently introduced concept, describes quantitative computerized algorithm-based feature extraction from imaging data including computer tomography (CT), magnetic resonance imaging (MRT), or positron-emission tomography (PET) images. For radiation oncology it offers the potential to significantly influence clinical decision-making and thus therapy planning and follow-up workflow.MethodsAfter image acquisition, image preprocessing, and defining regions of interest by structure segmentation, algorithms are applied to calculate shape, intensity, texture, and multiscale filter features. By combining multiple features and correlating them with clinical outcome, prognostic models can be created.ResultsRetrospective studies have proposed radiomics classifiers predicting, e. g., overall survival, radiation treatment response, distant metastases, or radiation-related toxicity. Besides, radiomics features can be correlated with genomic information (“radiogenomics”) and could be used for tumor characterization.DiscussionDistinct patterns based on data-based as well as genomics-based features will influence radiation oncology in the future. Individualized treatments in terms of dose level adaption and target volume definition, as well as other outcome-related parameters will depend on radiomics and radiogenomics. By integration of various datasets, the prognostic power can be increased making radiomics a valuable part of future precision medicine approaches.ConclusionThis perspective demonstrates the evidence for the radiomics concept in radiation oncology. The necessity of further studies to integrate radiomics classifiers into clinical decision-making and the radiation therapy workflow is emphasized.ZusammenfassungEinleitungRadiomics beschreibt eine algorithmusbasierte Berechnung von Merkmalen auf Basis von Bilddatensätzen einschließlich Computertomographie (CT), Magnetresonanztomographie (MRT) und Positronenemissionstomographie (PET). Radiomics hat das Potenzial, die klinische Entscheidungsfindung, die Therapieplanung sowie die Nachsorge signifikant zu beeinflussen.MethodenNach der Bildgebung erfolgt die Prozessierung der Daten sowie die Segmentierung von Zielstrukturen. Anschließend werden durch Algorithmen Merkmale berechnet, welche die Form, Intensität, Textur und multiskalierte Filter abbilden. Prognostische Modelle können durch Kombination und Korrelation relevanter Merkmale mit klinischen Daten erzeugt werden.ErgebnisIn retrospektiven Studien wurden Radiomics-basierte prognostische Modelle entwickelt, die eine Vorhersagekraft u. a. für Gesamtüberleben, Therapieansprechen, Fernmetastasierung und radiogene Nebenwirkung zeigten. Radiomics-Merkmale können außerdem mit zugrundeliegenden genetischen Informationen korreliert werden (Radiogenomics) und zur Tumoridentifikation verwendet werden.DiskussionIn der Präzisionsmedizin der Zukunft wird die Strahlentherapie maßgeblich durch Bildgebungs- und genombasierte Informationen beeinflusst werden. Behandlungskonzepte werden durch Individualisierung von Strahlendosis, Zielvolumendefinition und anderen therapieentscheidenden Faktoren auf den Patienten zugeschnitten werden. Dabei wird Radiomics durch Integration multipler Datensätze und dadurch bedingter Optimierung der prognostischen Aussagekraft möglicherweise eine herausragende Rolle einnehmen.SchlussfolgerungDieser Übersichtsartikel fasst die aktuelle Literatur über die Anwendung des Radiomics-Konzepts in der Strahlentherapie zusammen. Die Notwendigkeit von klinischen Studien zur Integration von Radiomics-Modellen wird hervorgehoben.

[1]  Chiu-chen Wang MANAGEMENT OF INFLAMMATORY CARCINOMA OF THE BREAST , 1978 .

[2]  A. Rutman,et al.  Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging. , 2009, European journal of radiology.

[3]  I. Poon,et al.  Automated radiation targeting in head-and-neck cancer using region-based texture analysis of PET and CT images. , 2009, International journal of radiation oncology, biology, physics.

[4]  A. E. Canda,et al.  Wait-and-See Policy for Clinical Complete Responders After Chemoradiation for Rectal Cancer , 2011 .

[5]  Andre Dekker,et al.  Radiomics: the process and the challenges. , 2012, Magnetic resonance imaging.

[6]  Patrick Granton,et al.  Radiomics: extracting more information from medical images using advanced feature analysis. , 2012, European journal of cancer.

[7]  D. D. Maki,et al.  Radiogenomic analysis of breast cancer using MRI: a preliminary study to define the landscape. , 2012, AJR. American journal of roentgenology.

[8]  Vicky Goh,et al.  Are Pretreatment 18F-FDG PET Tumor Textural Features in Non–Small Cell Lung Cancer Associated with Response and Survival After Chemoradiotherapy? , 2013, The Journal of Nuclear Medicine.

[9]  Jing Yuan,et al.  Head and neck squamous cell carcinoma: diagnostic performance of diffusion-weighted MR imaging for the prediction of treatment response. , 2013, Radiology.

[10]  William D. Dunn,et al.  MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. , 2013, Radiology.

[11]  Shan Tan,et al.  Spatial-temporal [¹⁸F]FDG-PET features for predicting pathologic response of esophageal cancer to neoadjuvant chemoradiation therapy. , 2013, International journal of radiation oncology, biology, physics.

[12]  Giovanna Rizzo,et al.  Texture analysis for the assessment of structural changes in parotid glands induced by radiotherapy. , 2013, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[13]  K. Sultanem,et al.  FDG-PET Image-Derived Features Can Determine HPV Status in Head-and-Neck Cancer , 2013 .

[14]  Andre Dekker,et al.  Radiogenomics: radiobiology enters the era of big data and team science. , 2014, International journal of radiation oncology, biology, physics.

[15]  Jayashree Kalpathy-Cramer,et al.  Quantitative Imaging Network: Data Sharing and Competitive AlgorithmValidation Leveraging The Cancer Imaging Archive. , 2014, Translational oncology.

[16]  P. Lambin,et al.  Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach , 2014, Nature Communications.

[17]  A. Markoe,et al.  Volumetric spectroscopic imaging of glioblastoma multiforme radiation treatment volumes. , 2014, International journal of radiation oncology, biology, physics.

[18]  Om Prakash Gurjar,et al.  Impact of repeat computerized tomography replans in the radiation therapy of head and neck cancers , 2014, Journal of medical physics.

[19]  Shan Tan,et al.  Modeling pathologic response of esophageal cancer to chemoradiation therapy using spatial-temporal 18F-FDG PET features, clinical parameters, and demographics. , 2014, International journal of radiation oncology, biology, physics.

[20]  Mauricio Reyes,et al.  Fully automatic GBM segmentation in the TCGA-GBM dataset: Prognosis and correlation with VASARI features , 2015, Scientific Reports.

[21]  P. Lambin,et al.  CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. , 2015, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[22]  Benjamin Haibe-Kains,et al.  Radiomic feature clusters and Prognostic Signatures specific for Lung and Head & Neck cancer , 2015, Scientific Reports.

[23]  P. Lambin,et al.  Radiomic Machine-Learning Classifiers for Prognostic Biomarkers of Head and Neck Cancer , 2015, Front. Oncol..

[24]  Shao Hui Huang,et al.  External validation of a prognostic CT-based radiomic signature in oropharyngeal squamous cell carcinoma , 2015, Acta oncologica.

[25]  J. Nieva,et al.  Emerging chemotherapy agents in lung cancer: nanoparticles therapeutics for non-small cell lung cancer , 2015 .

[26]  P. Marsden,et al.  False Discovery Rates in PET and CT Studies with Texture Features: A Systematic Review , 2015, PloS one.

[27]  M. Moran Radiation therapy in the locoregional treatment of triple-negative breast cancer. , 2015, The Lancet. Oncology.

[28]  S. Armato,et al.  Lung texture in serial thoracic computed tomography scans: correlation of radiomics-based features with radiation therapy dose and radiation pneumonitis development. , 2015, International journal of radiation oncology, biology, physics.

[29]  P. Lambin,et al.  Machine Learning methods for Quantitative Radiomic Biomarkers , 2015, Scientific Reports.

[30]  Juan J. Martinez,et al.  Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. , 2015, Medical physics.

[31]  Peter Balter,et al.  Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung cancer? , 2015, Medical physics.

[32]  Stefan Förster,et al.  Textural analysis of pre-therapeutic [18F]-FET-PET and its correlation with tumor grade and patient survival in high-grade gliomas , 2015, European Journal of Nuclear Medicine and Molecular Imaging.

[33]  Anant Madabhushi,et al.  Radiomics based targeted radiotherapy planning (Rad-TRaP): a computational framework for prostate cancer treatment planning with MRI , 2016, Radiation Oncology.

[34]  A. Madabhushi,et al.  Radiomic features from the peritumoral brain parenchyma on treatment-naïve multi-parametric MR imaging predict long versus short-term survival in glioblastoma multiforme: Preliminary findings , 2017, European Radiology.

[35]  J. Paul,et al.  Quantitative Computed Tomography for Tumor Response Assessment During Radiation Therapy for Lung Cancer , 2016 .

[36]  K Padgett,et al.  Multiparametric evaluation of preoperative MRI in early stage breast cancer: prognostic impact of peri-tumoral fat , 2017, Clinical and Translational Oncology.

[37]  Jinzhong Yang,et al.  Computational resources for radiomics , 2016 .

[38]  Raymond H Mak,et al.  Radiomic phenotype features predict pathological response in non-small cell lung cancer. , 2016, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[39]  N. Shah,et al.  Radiation injury vs. recurrent brain metastasis: combining textural feature radiomics analysis and standard parameters may increase 18F-FET PET accuracy without dynamic scans , 2017, European Radiology.

[40]  Arvind Rao,et al.  Radiomics in glioblastoma: current status, challenges and potential opportunities , 2016 .

[41]  Fridtjof Nüsslin,et al.  Individualized radiotherapy by combining high-end irradiation and magnetic resonance imaging , 2016, Strahlentherapie und Onkologie.

[42]  Robert J. Gillies,et al.  Association of multiparametric MRI quantitative imaging features with prostate cancer gene expression in MRI-targeted prostate biopsies , 2016, Oncotarget.

[43]  Martin Sill,et al.  Radiogenomics of Glioblastoma: Machine Learning-based Classification of Molecular Characteristics by Using Multiparametric and Multiregional MR Imaging Features. , 2016, Radiology.

[44]  Philippe Lambin,et al.  Interchangeability of a Radiomic Signature Between Conventional and Weekly Cone Beam Computed Tomography Allowing Response Prediction in Non-Small Cell Lung Cancer , 2016 .

[45]  Carmen Bergom,et al.  Quantitative Computed Tomography for Radiation-Induced Changes in Normal Breast Tissue During Partial Breast Irradiation , 2016 .

[46]  Aaron D Ward,et al.  Detection of Local Cancer Recurrence After Stereotactic Ablative Radiation Therapy for Lung Cancer: Physician Performance Versus Radiomic Assessment. , 2016, International journal of radiation oncology, biology, physics.

[47]  P. Gibbs,et al.  Minkowski functionals: An MRI texture analysis tool for determination of the aggressiveness of breast cancer , 2016, Journal of magnetic resonance imaging : JMRI.

[48]  T. Niu,et al.  Rectal Cancer: Assessment of Neoadjuvant Chemoradiation Outcome based on Radiomics of Multiparametric MRI , 2016, Clinical Cancer Research.

[49]  Guadalupe Canahuate,et al.  Development of a Predictive Quantitative Contrast Computed Tomography-Based Feature (Radiomics) Profile for Local Recurrence in Oropharyngeal Cancers , 2016 .

[50]  J. Deasy,et al.  Texture analysis on parametric maps derived from dynamic contrast-enhanced magnetic resonance imaging in head and neck cancer. , 2016, World journal of radiology.

[51]  Paul Kinahan,et al.  Radiomics: Images Are More than Pictures, They Are Data , 2015, Radiology.

[52]  H. Aerts,et al.  Applications and limitations of radiomics , 2016, Physics in medicine and biology.

[53]  Chad A Holder,et al.  Imaging-genomics reveals driving pathways of MRI derived volumetric tumor phenotype features in Glioblastoma , 2016, BMC Cancer.

[54]  Sean D. McGarry,et al.  Magnetic Resonance Imaging-Based Radiomic Profiles Predict Patient Prognosis in Newly Diagnosed Glioblastoma Before Therapy , 2016, Tomography.

[55]  J. Z. Wang,et al.  Predicting Distant Failure in Lung Stereotactic Body Radiation Therapy Using Multiobjective Radiomics Model , 2016 .

[56]  Oscar Acosta,et al.  Haralick textural features on T2‐weighted MRI are associated with biochemical recurrence following radiotherapy for peripheral zone prostate cancer , 2017, Journal of magnetic resonance imaging : JMRI.