Large photoactive supramolecular ensembles prepared from C60–pyridine substrates and multi-Zn(II)–porphyrin receptors

Fullerene derivatives bearing a pyridine sub-unit have been prepared. Their ability to form self-assembled supramolecular structures with mono- and polytopic Zn(II)–porphyrin receptors has been first evidenced by UV-vis studies. These supramolecular complexes are multi-component photoactive devices, in which the emission of the porphyrinic receptor is dramatically quenched by the fullerene units. This new property, resulting from the association of the different molecular sub-units, also allowed us to investigate in detail the self-assembly process using fluorescence titrations. The binding studies revealed positive cooperative effects for the assembly of the C60–pyridine derivatives with polytopic receptors as a result of intramolecular C60–C60 interactions between the different guests assembled onto the multi-Zn(II)–porphyrin hosts.

[1]  J. Nierengarten,et al.  Supramolecular chemistry for the self-assembly of fullerene-rich dendrimers , 2007 .

[2]  N. Aratani,et al.  Cyclic porphyrin arrays as artificial photosynthetic antenna: synthesis and excitation energy transfer. , 2007, Chemical Society reviews.

[3]  J. Nierengarten,et al.  Molecular and supramolecular C60-oligophenylenevinylene conjugates. , 2007, Chemical communications.

[4]  N. Armaroli,et al.  Calix[4]arene-linked bisporphyrin hosts for fullerenes: binding strength, solvation effects, and porphyrin-fullerene charge transfer bands. , 2006, Journal of the American Chemical Society.

[5]  Vincenzo Balzani,et al.  Artificial nanomachines based on interlocked molecular species: recent advances. , 2006, Chemical Society reviews.

[6]  T. Aida,et al.  Construction of segregated arrays of multiple donor and acceptor units using a dendritic scaffold: remarkable dendrimer effects on photoinduced charge separation. , 2006, Journal of the American Chemical Society.

[7]  M. Prato,et al.  Iconography : Fullerene photoactive dyads assembled by axial coordination with metals , 2006 .

[8]  A. Albrecht-Gary,et al.  Ammonium–crown ether interactions for the construction of fullerene-containing photoactive supramolecular devices , 2006 .

[9]  A. Albrecht-Gary,et al.  Synthesis of fullerodendrons with an ammonium unit at the focal point and their cooperative self-assembly on a fluorescent ditopic crown ether receptor. , 2006, Chemistry.

[10]  N. Martín,et al.  Supramolecular chemistry of fullerenes , 2006 .

[11]  C. Tung,et al.  Helicity induction in hydrogen-bonding-driven zinc porphyrin foldamers by chiral C60-incorporating histidines. , 2006, Angewandte Chemie.

[12]  A. Talarico,et al.  A versatile bis-porphyrin tweezer host for the assembly of noncovalent photoactive architectures: a photophysical characterization of the tweezers and their association with porphyrins and other guests. , 2006, Chemistry.

[13]  A. Albrecht-Gary,et al.  Supramolecular click chemistry for the self-assembly of a stable Zn(II)-porphyrin-C60 conjugate. , 2005, Chemical communications.

[14]  P. Fowler,et al.  Restricted Rotation in (Phenylpyrrolidino)fullerene Derivatives , 2005 .

[15]  D. Guldi,et al.  Hydrogen-bonding motifs in fullerene chemistry. , 2005, Angewandte Chemie.

[16]  A. Albrecht-Gary,et al.  Supramolecular click chemistry with a bisammonium-C60 substrate and a ditopic crown ether host. , 2005, Angewandte Chemie.

[17]  A. Albrecht-Gary,et al.  Cooperative recognition of C60-ammonium substrates by a ditopic oligophenylenevinylene/crown ether host. , 2005, Chemistry.

[18]  Atula S. D. Sandanayaka,et al.  Effect of axial ligation or pi-pi-type interactions on photochemical charge stabilization in "two-point" bound supramolecular porphyrin-fullerene conjugates. , 2005, Chemistry.

[19]  F. D’Souza,et al.  Photoinduced electron transfer in supramolecular systems of fullerenes functionalized with ligands capable of binding to zinc porphyrins and zinc phthalocyanines , 2005 .

[20]  A. Albrecht-Gary,et al.  Building blocks for self-assembled porphyrinic photonic wires. , 2005, Organic letters.

[21]  Atula S. D. Sandanayaka,et al.  Supramolecular porphyrin-fullerene via 'two-point' binding strategy: axial-coordination and cation-crown ether complexation. , 2005, Chemical communications.

[22]  M. Zandler,et al.  Supramolecular complex composed of a covalently linked zinc porphyrin dimer and fulleropyrrolidine bearing two axially coordinating pyridine entities. , 2004, Chemical communications.

[23]  H. Imahori,et al.  Porphyrin-fullerene linked systems as artificial photosynthetic mimics. , 2004, Organic & biomolecular chemistry.

[24]  H. Imahori,et al.  Giant multiporphyrin arrays as artificial light-harvesting antennas. , 2004, The journal of physical chemistry. B.

[25]  Than Htun,et al.  A Negative Deviation from Stern–Volmer Equation in Fluorescence Quenching , 2004, Journal of Fluorescence.

[26]  G. Ercolani Assessment of cooperativity in self-assembly. , 2003, Journal of the American Chemical Society.

[27]  Stephen R. Wilson,et al.  Synthesis and photophysics of a linear non-covalently linked porphyrin-fullerene dyad. , 2003, Chemical communications.

[28]  Dongho Kim,et al.  Efficient synthesis of benzene-centered cyclic porphyrin hexamers , 2002 .

[29]  A. Hirsch,et al.  Supramolecular assembly of a quasi-linear heterofullerene–porphyrin dyad , 2002 .

[30]  E. W. Meijer,et al.  Singlet-energy transfer in quadruple hydrogen-bonded oligo(p-phenylenevinylene)–fullerene dyads , 2002 .

[31]  Dirk M Guldi,et al.  Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models. , 2002, Chemical Society reviews.

[32]  J. Sauvage,et al.  Multiporphyrinic Rotaxanes: Control of Intramolecular Electron Transfer Rate by Steering the Mutual Arrangement of the Chromophores , 2000 .

[33]  H. Imahori,et al.  Fullerenes as Novel Acceptors in Photosynthetic Electron Transfer , 1999 .

[34]  F. D’Souza,et al.  Self-Assembled Porphyrin-C(60) and Porphycene-C(60) Complexes via Metal Axial Coordination. , 1999, Inorganic chemistry.

[35]  M. Prato,et al.  Fulleropyrrolidines: A Family of Full-Fledged Fullerene Derivatives , 1998 .

[36]  J. Nicoud,et al.  Cyclopropanation of C60 with malonic acid mono-esters , 1997 .

[37]  F. Diederich,et al.  Regio‐ and Diastereoselective Bisfunctionalization of C60 and Enantioselective Synthesis of a C60 Derivative with a Chiral Addition Pattern , 1996 .

[38]  Carsten Bingel,et al.  Cyclopropanierung von Fullerenen , 1993 .

[39]  M. Maeder,et al.  Nonlinear least-squares fitting of multivariate absorption data , 1990 .

[40]  J. Scaiano,et al.  Effect of cyclodextrin complexation on the photochemistry of xanthone. Absolute measurement of the kinetics for triplet-state exit , 1990 .

[41]  H. Gampp,et al.  Calculation of equilibrium constants from multiwavelength spectroscopic data-IV Model-free least-squares refinement by use of evolving factor analysis. , 1986, Talanta.

[42]  B. Perlmutter-Hayman Cooperative binding to macromolecules. A formal approach , 1986 .

[43]  H. Gampp,et al.  Calculation of equilibrium constants from multiwavelength spectroscopic data--II: SPECFIT: two user-friendly programs in basic and standard FORTRAN 77. , 1985, Talanta.

[44]  H. Gampp,et al.  Calculation of equilibrium constants from multiwavelength spectroscopic data-I Mathematical considerations. , 1985, Talanta.

[45]  F. Rossotti,et al.  The use of electronic computing techniques in the calculation of stability constants , 1971 .

[46]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[47]  Joel H. Hildebrand,et al.  A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons , 1949 .

[48]  G. Scatchard,et al.  THE ATTRACTIONS OF PROTEINS FOR SMALL MOLECULES AND IONS , 1949 .

[49]  A. Albrecht-Gary,et al.  A macrocyclic supramolecular complex obtained from a fullerene ligand bearing two pyridine substituents and a bis-Zn(II)-porphyrin receptor , 2006 .

[50]  J. Nierengarten Fullerodendrimers: fullerene-containing macromolecules with intriguing properties. , 2003, Topics in current chemistry.

[51]  J. Hummelen,et al.  Preferential hetero-dimer formation and equilibrium dynamics of self-complementary bifunctional oligo(p-phenylenevinylene) and C60 ureido-pyrimidinone derivatives in solution. , 2002, Chemical communications.

[52]  T. Moore,et al.  Mimicking photosynthetic solar energy transduction. , 2001, Accounts of chemical research.

[53]  J. Gisselbrecht,et al.  Tweezers hosts for intercalation of Lewis base guests:Tuning physico-chemical properties of cofacial porphyrin dimers , 2001 .

[54]  F. Diederich,et al.  A new pyridyl-substituted methanofullerene derivative. Photophysics, electrochemistry and self-assembly with zinc(II) meso-tetraphenylporphyrin (ZnTPP) , 1999 .

[55]  A. Hirsch,et al.  Efficient cyclopropanation of C60 starting from malonates , 1997 .