Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition

[1]  Kan Zhang,et al.  Interaction of Rhodamine 6G molecules with graphene: a combined computational-experimental study. , 2016, Physical chemistry chemical physics : PCCP.

[2]  Duncan Graham,et al.  Surface-enhanced Raman scattering , 1998 .

[3]  Hong Guo,et al.  RESCU: A real space electronic structure method , 2015, J. Comput. Phys..

[4]  I. Cole,et al.  Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light. , 2015, Angewandte Chemie.

[5]  Bai Yang,et al.  The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective , 2015, Nano Research.

[6]  Hao Wang,et al.  Intercrossed carbon nanorings with pure surface states as low-cost and environment-friendly phosphors for white-light-emitting diodes. , 2015, Angewandte Chemie.

[7]  H. Mao,et al.  Electronic and structural properties at the interface between CuPc and graphene , 2015 .

[8]  M. Dresselhaus,et al.  Direct measurement of the Raman enhancement factor of rhodamine 6G on graphene under resonant excitation , 2014, Nano Research.

[9]  Sung Kim,et al.  Graphene-quantum-dot nonvolatile charge-trap flash memories , 2014, Nanotechnology.

[10]  Hyun-Jun Hwang,et al.  Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics , 2014, Nanotechnology.

[11]  Rong Yang,et al.  Two-step growth of graphene with separate controlling nucleation and edge growth directly on SiO2 substrates , 2014 .

[12]  S. Rhee,et al.  Electroluminescence from graphene quantum dots prepared by amidative cutting of tattered graphite. , 2014, Nano letters.

[13]  Wei Chen,et al.  Critical crystal growth of graphene on dielectric substrates at low temperature for electronic devices. , 2013, Angewandte Chemie.

[14]  Liang-shi Li,et al.  Colloidal graphene quantum dots with well-defined structures. , 2013, Accounts of chemical research.

[15]  A. Neto,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. , 2013 .

[16]  C. M. Li,et al.  Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. , 2013, Angewandte Chemie.

[17]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[18]  Nannan Mao,et al.  Graphene: a platform for surface-enhanced Raman spectroscopy. , 2013, Small.

[19]  X. Ling,et al.  Charge-Transfer Mechanism in Graphene-Enhanced Raman Scattering , 2012 .

[20]  Sho Kimura,et al.  Solution-Processed Green-Sensitive Organic Photoconductive Device Using Rhodamine 6G , 2012 .

[21]  Yi Luo,et al.  Fabrication of Graphene Nanomesh and Improved Chemical Enhancement for Raman Spectroscopy , 2012 .

[22]  M. Dresselhaus,et al.  Surface enhanced Raman spectroscopy on a flat graphene surface , 2012, Proceedings of the National Academy of Sciences.

[23]  X. Ling,et al.  Probing the effect of molecular orientation on the intensity of chemical enhancement using graphene-enhanced Raman spectroscopy. , 2012, Small.

[24]  Zhonghua Yu,et al.  R6G on graphene: high Raman detection sensitivity, yet decreased Raman cross-section. , 2012, Nano letters.

[25]  L. Qu,et al.  Graphene-quantum-dot assembled nanotubes: a new platform for efficient Raman enhancement. , 2012, ACS nano.

[26]  Zhenhua Ni,et al.  Surface enhanced Raman scattering of aged graphene: Effects of annealing in vacuum , 2011 .

[27]  Kwang S. Kim,et al.  UV/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering. , 2011, ACS nano.

[28]  Chih-Yi Liu,et al.  Plasmonic coupling of silver nanoparticles covered by hydrogen-terminated graphene for surface-enhanced Raman spectroscopy. , 2011, Optics express.

[29]  Hua Xu,et al.  Effect of graphene Fermi level on the Raman scattering intensity of molecules on graphene. , 2011, ACS nano.

[30]  Rong Yang,et al.  Catalyst-free growth of nanographene films on various substrates , 2011 .

[31]  L. Qu,et al.  An Electrochemical Avenue to Green‐Luminescent Graphene Quantum Dots as Potential Electron‐Acceptors for Photovoltaics , 2011, Advanced materials.

[32]  Xinxin Yu,et al.  Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets. , 2011, ACS nano.

[33]  E. Wang,et al.  An Anisotropic Etching Effect in the Graphene Basal Plane , 2010, Advanced materials.

[34]  X. Ling,et al.  First-layer effect in graphene-enhanced Raman scattering. , 2010, Small.

[35]  Jinglin Liu,et al.  Water-soluble fluorescent carbon quantum dots and photocatalyst design. , 2010, Angewandte Chemie.

[36]  Liang-shi Li,et al.  Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. , 2010, Nano letters.

[37]  Xin Yan,et al.  Synthesis of large, stable colloidal graphene quantum dots with tunable size. , 2010, Journal of the American Chemical Society.

[38]  Jing Kong,et al.  Can graphene be used as a substrate for Raman enhancement? , 2010, Nano letters.

[39]  Minghong Wu,et al.  Hydrothermal Route for Cutting Graphene Sheets into Blue‐Luminescent Graphene Quantum Dots , 2010, Advanced materials.

[40]  A. Reina,et al.  Observation of Van Hove singularities in twisted graphene layers , 2009, 0912.2102.

[41]  Zhong-Qun Tian,et al.  Surface-enhanced Raman spectroscopy: substrate-related issues , 2009, Analytical and bioanalytical chemistry.

[42]  Stefano Borini,et al.  Optical constants of graphene layers in the visible range , 2009 .

[43]  N. Halas,et al.  Tailoring plasmonic substrates for surface enhanced spectroscopies. , 2008, Chemical Society reviews.

[44]  Bing-Lin Gu,et al.  Adsorption of Gas Molecules on Graphene Nanoribbons and Its Implication for Nanoscale Molecule Sensor , 2008, 0803.1516.

[45]  F. Rana,et al.  Graphene Terahertz Plasmon Oscillators , 2007, IEEE Transactions on Nanotechnology.

[46]  K. Novoselov Graphene: mind the gap. , 2007, Nature materials.

[47]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[48]  H. Aoki,et al.  Topological analysis of the quantum Hall effect in graphene: Dirac-Fermi transition across van Hove singularities and edge versus bulk quantum numbers , 2006, cond-mat/0607669.

[49]  George C. Schatz,et al.  Electromagnetic mechanism of SERS , 2006 .

[50]  Zhenyu Zhang,et al.  Chemical contribution to surface-enhanced Raman scattering. , 2006, Physical review letters.

[51]  William A. Goddard,et al.  Predictions of Hole Mobilities in Oligoacene Organic Semiconductors from Quantum Mechanical Calculations , 2004 .

[52]  Charles M. Lieber,et al.  Electronic Density of States of Atomically Resolved Single-Walled Carbon Nanotubes: Van Hove Singularities and End States , 1998, cond-mat/9812408.

[53]  A. Rinzler,et al.  Electronic structure of atomically resolved carbon nanotubes , 1998, Nature.

[54]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[55]  M. Fleischmann,et al.  Raman spectra of pyridine adsorbed at a silver electrode , 1974 .

[56]  Jing Zhao,et al.  Graphene quantum dots-based platform for the fabrication of electrochemical biosensors , 2011 .

[57]  J. Güttinger Graphene quantum dots , 2011 .

[58]  J. Kneipp Nanosensors Based on SERS for Applications in Living Cells , 2006 .

[59]  G. Ceder,et al.  A Combined Computational/Experimental Study on , 2003 .

[60]  H. Metiu Surface enhanced spectroscopy , 1984 .