Anoctamin 2 identified as an autoimmune target in multiple sclerosis
暂无分享,去创建一个
Peter Nilsson | Erik Holmgren | Mathias Uhlén | Lars Alfredsson | Jochen M. Schwenk | Ingrid Kockum | Tomas Olsson | Björn Forsström | J. Mulder | Björn Forsström | M. Uhlén | P. Nilsson | J. Schwenk | T. Olsson | L. Alfredsson | I. Kockum | H. Grönlund | M. Khademi | E. Holmgren | N. Mitsios | T. Waterboer | B. Ayoglu | A. O. Guerreiro-Cacais | Nicholas Mitsios | Jan Mulder | Tim Waterboer | Hans Grönlund | Mohsen Khademi | Ronald Sjöberg | Burcu Ayoglu | A. Zandian | Arash Zandian | Johan Bredenberg | Izaura Lima Bomfim | André Ortlieb Guerreiro-Cacais | Nada Abdelmagid | J. Bredenberg | N. Abdelmagid | R. Sjöberg | I. Lima Bomfim | P. Nilsson
[1] M. Pirinen,et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis , 2013, Nature Genetics.
[2] G. von Heijne,et al. Tissue-based map of the human proteome , 2015, Science.
[3] Sergio E. Baranzini,et al. Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets , 2008, Nature.
[4] A. Menini,et al. Developmental expression of the calcium‐activated chloride channels TMEM16A and TMEM16B in the mouse olfactory epithelium , 2014, Developmental neurobiology.
[5] Jorge R. Oksenberg,et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis , 2002, Nature Medicine.
[6] A. Francia,et al. Peripheral blood biomarkers in multiple sclerosis. , 2015, Autoimmunity reviews.
[7] D. Yousem,et al. Olfactory Dysfunction in Multiple Sclerosis: Relation to Plaque Load in Inferior Frontal and Temporal Lobes a , 1998, Annals of the New York Academy of Sciences.
[8] I. Cohen,et al. Antigen microarrays identify CNS-produced autoantibodies in RRMS , 2012, Neurology.
[9] Simon C. Potter,et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis , 2011, Nature.
[10] Roland Martin,et al. Multiple sclerosis: a complicated picture of autoimmunity , 2007, Nature Immunology.
[11] Guillermo Izquierdo,et al. Antigen microarrays identify unique serum autoantibody signatures in clinical and pathologic subtypes of multiple sclerosis , 2008, Proceedings of the National Academy of Sciences.
[12] M. Hecker,et al. Molecular biomarkers in cerebrospinal fluid of multiple sclerosis patients. , 2015, Autoimmunity reviews.
[13] Roberto Ravazzolo,et al. TMEM16A, A Membrane Protein Associated with Calcium-Dependent Chloride Channel Activity , 2008, Science.
[14] A. Schmitt,et al. Ten years of proteomics in multiple sclerosis , 2014, Proteomics.
[15] R. Dutzler,et al. X-ray structure of a calcium-activated TMEM16 lipid scramblase , 2014, Nature.
[16] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[17] Min Ho Tak,et al. TMEM16A confers receptor-activated calcium-dependent chloride conductance , 2008, Nature.
[18] Alexander T. Dilthey,et al. Multi-Population Classical HLA Type Imputation , 2013, PLoS Comput. Biol..
[19] Lawrence Steinman,et al. Protein microarrays guide tolerizing DNA vaccine treatment of autoimmune encephalomyelitis , 2003, Nature Biotechnology.
[20] Kalle Jonasson,et al. A whole‐genome bioinformatics approach to selection of antigens for systematic antibody generation , 2008, Proteomics.
[21] H. Stöhr,et al. TMEM16B, A Novel Protein with Calcium-Dependent Chloride Channel Activity, Associates with a Presynaptic Protein Complex in Photoreceptor Terminals , 2009, The Journal of Neuroscience.
[22] A. Kowald,et al. Investigation of autoantibody profiles for cerebrospinal fluid biomarker discovery in patients with relapsing–remitting multiple sclerosis , 2012, Journal of Neuroimmunology.
[23] T. Olsson,et al. Functional identification of pathogenic autoantibody responses in patients with multiple sclerosis , 2012, Brain : a journal of neurology.
[24] W. Robinson,et al. Lipid microarrays identify key mediators of autoimmune brain inflammation , 2006, Nature Medicine.
[25] R. Schreiber,et al. Anoctamins are a family of Ca2+-activated Cl− channels , 2012, Journal of Cell Science.
[26] Christopher H. Thompson,et al. Chloride channels: often enigmatic, rarely predictable. , 2010, Annual review of physiology.
[27] H. Hartung,et al. Cerebrospinal fluid biomarkers in multiple sclerosis , 2009, Neurobiology of Disease.
[28] P. Kongsuphol,et al. Expression and function of epithelial anoctamins , 2012, Experimental physiology.
[29] B. Hemmer,et al. To look for a needle in a haystack: the search for autoantibodies in multiple sclerosis , 2014, Multiple sclerosis.
[30] J. Reisert,et al. ANO2 is the cilial calcium-activated chloride channel that may mediate olfactory amplification , 2009, Proceedings of the National Academy of Sciences.
[31] U. Emre,et al. Olfactory dysfunction in multiple sclerosis. , 2018, Multiple sclerosis and related disorders.
[32] T. Olsson,et al. Epstein-Barr virus and multiple sclerosis: interaction with HLA , 2011, Genes and Immunity.
[33] Bernhard Hemmer,et al. Potassium channel KIR4.1 as an immune target in multiple sclerosis. , 2012, The New England journal of medicine.
[34] P. Nilsson,et al. Bead Arrays for Antibody and Complement Profiling Reveal Joint Contribution of Antibody Isotypes to C3 Deposition , 2014, PloS one.
[35] S Greenland,et al. Concepts of interaction. , 1980, American journal of epidemiology.
[36] M. Uhlén,et al. Autoantibody Profiling in Multiple Sclerosis Using Arrays of Human Protein Fragments , 2013, Molecular & Cellular Proteomics.
[37] C. Cotsapas,et al. Protein array–based profiling of CSF identifies RBPJ as an autoantigen in multiple sclerosis , 2013, Neurology.
[38] M. Dalakas,et al. Fine specificity of antibodies against AQP4: epitope mapping reveals intracellular epitopes. , 2011, Journal of autoimmunity.
[39] Lars Alfredsson,et al. Calculating measures of biological interaction using R , 2006, European Journal of Epidemiology.
[40] J. Fraussen,et al. Targets of the humoral autoimmune response in multiple sclerosis. , 2014, Autoimmunity reviews.