COMPARISON OF LINEAR AND NONLINEAR STATISTICS METHODS APPLIED IN INDUSTRIAL PROCESS MODELING PROCEDURE

This paper presents the comparison of Multiple Linear Regression Analysis (MLRA) and Artificial Neural Networks (ANN) as the statistical analysis tools. Most influential statistical parameters for choosing right modeling tool are evaluated in this investigation. Investigation was performed on real statistical data set obtained after measurements of the process parameters underindustrial conditions.

[1]  Ž. Živković,et al.  The influence of the silicate slag composition on copper losses during smelting of the sulfide concentrates , 2009 .

[2]  B. Yegnanarayana,et al.  Artificial Neural Networks , 2004 .

[3]  Milorad Bojić,et al.  Application of linear programming in energy management , 2009 .

[4]  Qi-yuan Chen,et al.  Intensification of precipitation of gibbsite from seeded caustic sodium aluminate liquor by seed activation and addition of crown ether , 2007 .

[5]  F. Giordano,et al.  Differential Equations: A Modeling Approach , 1991 .

[6]  Russell C. Eberhart,et al.  Neural network PC tools: a practical guide , 1990 .

[7]  Chris F. Taylor,et al.  A systematic approach to modeling, capturing, and disseminating proteomics experimental data , 2003, Nature Biotechnology.

[8]  Avi Pfeffer,et al.  INFLUENCE OF , 2014 .

[9]  David Liu,et al.  Artificial neural network vs. nonlinear regression for gold content estimation in pyrometallurgy , 2009, Expert Syst. Appl..

[10]  Robert N. Meroney,et al.  Spurious or virtual correlation errors commonly encountered in reduction of scientific data , 1998 .

[11]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[12]  Russell C. Eberhart,et al.  Neural network PC tools , 1990 .

[13]  A. D. Giraldo-Zuniga,et al.  KINETIC DRYING EXPERIMENTAL DATA AND MATHEMATICAL MODEL FOR JACKFRUIT (Artocarpus integrifolia) SLICES DATOS EXPERIMENTALES Y MODELO MATEMÁTICO DE LA CINÉTICA DE SECADO DE RODAJAS DE JACA (Artocarpus integrifolia) , 2006 .