Phenomenological Yield and Failure Criteria

Models for isotropic materials based on the equivalent stress concept are discussed. At first, so-called classical models which are useful in the case of absolutely brittle or ideal ductile materials are presented. Tests for basic stress states are suggested. At second, standard models describing the intermediate range between the absolutely brittle and ideal-ductile behavior are introduced. Any criterion is expressed by various mathematical equations formulated, for example, in terms of invariants. At the same time the criteria can be visualized which simplifies the application. At third, in the main part pressure-insensitive, pressure-sensitive and combined models are separated. Fitting methods based on mathematical, physical and geometrical criteria are necessary. Finally, three examples (gray cast iron, poly(oxymethylene) (POM) and poly(vinyl chloride) (PVC) hard foam) demonstrates the application of different approaches in modeling certain limit behavior. Two appendices are necessary for a better understanding of this chapter: in Chap. 2 applied invariants are briefly introduced and a table of discussed in this chapter criteria with references is given.

[1]  Burton Paul,et al.  A Modification of the Coulomb-Mohr Theory of Fracture , 1961 .

[2]  J. Jonas,et al.  Yield surfaces for textured polycrystals—I. Crystallographic approach , 1987 .

[3]  C. D. Pomeroy Creep of engineering materials , 1978 .

[4]  R. Hill The mathematical theory of plasticity , 1950 .

[5]  M. Schlimmer Zeitabhängiges mechanisches Werkstoffverhalten , 1984 .

[6]  S. Timoshenko,et al.  Elements Of Strength Of Materials , 1935 .

[8]  R. Ely Biaxial stress testing of acrylic tube specimens , 1967 .

[9]  R. Rivlin Large Elastic Deformations of Isotropic Materials , 1997 .

[11]  A. Reuss,et al.  Vereinfachte Berechnung der plastischen Formänderungsgeschwindigkeiten bei Voraussetzung der Schubspannungsfließbedingung , 1933 .

[12]  Z. Mroz,et al.  Yield or martensitic phase transformation conditions and dissipation functions for isotropic, pressure-insensitive alloys exhibiting SD effect , 2008 .

[13]  E. Billington The Poynting effect , 1986 .

[14]  David R Hayhurst,et al.  Constitutive equations for creep rupture , 1977 .

[15]  C. T. Candland Implications of macroscopic failure criteria which are independent of hydrostatic stress , 1975 .

[16]  Chandrakant S. Desai,et al.  A general basis for yield, failure and potential functions in plasticity , 1980 .

[17]  H. Ziegler Zum plastischen Potential in der Bodenmechanik , 1969 .

[18]  David R Hayhurst,et al.  Creep rupture under multi-axial states of stress , 1972 .

[19]  R. M. Haythornthwaite Range of Yield Conditions in Ideal Plasticity , 1961 .

[20]  J. Betten,et al.  Der Poynting-Effekt als Ursache einer werkstoffbedingten Anisotropie , 1988 .

[21]  P. J. Blatz Application of Finite Elastic Theory to the Behavior of Rubberlike Materials , 1963 .

[22]  M. Zyczkowski,et al.  Discontinuous bifurcations in the case of the Burzyński-Torre yield condition , 1999 .

[23]  Versagenskriterien für Kunststoffe , 1975 .

[24]  H. Irago A Saint-Venant's analysis in free elastic rods* , 1999 .

[25]  N. J. Mills,et al.  The yield locus of polycarbonate , 1973 .

[26]  Liping Liu THEORY OF ELASTICITY , 2012 .

[27]  G. Alpa,et al.  On a statistical approach to brittle rupture for multiaxial states of stress , 1984 .

[28]  B. D. Annin Theories of ideal plasticity with a singular yield surface , 1999 .

[29]  Zhong-jin Wang,et al.  Multiple-factor dependence of the yielding behavior to isotropic ductile materials , 2005 .

[30]  Stephen P. Timoshenko,et al.  History of strength of materials : with a brief account of the history of theory of elasticity and theory of structures , 1983 .

[31]  V. Kolupaev,et al.  Kombinierte Fließ- und Grenzbedingungen , 2008 .

[32]  D. C. Freeman,et al.  Failure criteria for isotropic materials, applications to low-density types , 2002 .

[33]  Michel Aubertin,et al.  Un critère de rupture multiaxial pour matériaux fragiles , 1998 .

[34]  H. Altenbach,et al.  Yield criteria of hexagonal symmetry in the π-plane , 2013 .

[35]  D. C. Drucker,et al.  Some extensions of elementary plasticity theory , 1951 .

[36]  Thomas Seelig,et al.  Fracture Mechanics: With an Introduction to Micromechanics , 2006 .

[37]  E. W. Billington,et al.  Introduction to the mechanics and physics of solids , 1978 .

[38]  W. Drugan,et al.  Theory of plasticity , 1987 .

[39]  D. C. Drucker Limit analysis of two and three dimensional soil mechanics problems , 1953 .

[40]  J. Pan,et al.  A non-quadratic yield function for polymeric foams , 2006 .

[41]  Desjuzeur RÉSISTANCE DES MATÉRIAUX , 1912 .

[42]  Mao-Hong Yu,et al.  Unified strength theory and its applications , 2004 .

[43]  R. Schmidt,et al.  Über den Zusammenhang von Spannungen und Formänderungen im Verfestigungsgebiet , 1932 .

[44]  E. Gdoutos,et al.  Failure of cellular foams under multiaxial loading , 2002 .

[45]  D. Gross,et al.  Mechanik elastischer Körper und Strukturen , 2002 .

[46]  Otto Mohr,et al.  Abhandlungen aus dem Gebiete der technischen Mechanik , 1906 .

[47]  Wai-Fah Chen,et al.  Structural Plasticity: Theory, Problems, and CAE Software , 1991 .

[48]  P. Theocaris A general yield criterion for engineering materials, depending on void growth , 1986 .

[49]  W. Stadler Multicriteria Optimization in Engineering and in the Sciences , 1988 .

[50]  Markos Papageorgiou,et al.  Optimierung. Statische, dynamische, stochastische Verfahren für die Anwendung , 2012 .

[51]  H. Altenbach,et al.  Visualization of the Unified Strength Theory , 2013 .

[52]  Holm Altenbach,et al.  Konvexe und nichtkonvexe Fließflächen , 2011 .

[53]  D. F. Jackson Mathematical Concepts and Methods in Science and Engineering Vol 11 : Integral Transforms in Science and Engineering , 1979 .

[54]  Edwin K. P. Chong,et al.  An Introduction to Optimization: Chong/An Introduction , 2008 .

[55]  A. Argon,et al.  Plastic Deformation Bands in Glassy Polystyrene , 1968 .

[56]  Constitutive Equations of Rock with Shear Dilatancy , 1975 .

[57]  Bradley Dodd,et al.  Limitations on isotropic yield criteria , 1989 .

[58]  D. Ivlev The theory of fracture of solids , 1959 .

[59]  R. M. Haythornthwaite Range of Yield Condition in Ideal Plasticity , 1962 .

[60]  A. Schofield,et al.  Critical State Soil Mechanics , 1968 .

[61]  C. Bach Elastizität und Festigkeit: Die für die Technik wichtigsten Sätze und deren erfahrungsmäßige Grundlage , 1889 .

[62]  Henry J. Cowan,et al.  The strength of plain, reinforced and prestressed concrete under the action of combined stresses, with particular reference to the combined bending and torsion of rectangular sections , 1953 .

[63]  M. Ristinmaa,et al.  The Mechanics of Constitutive Modeling , 2005 .

[64]  D. Ivlev On the development of a theory of ideal plasticity , 1958 .

[65]  E. Beltrami,et al.  Sulle condizioni di resistenza dei corpi elastici , 1885 .

[66]  W. Burzyński Theoretical foundations of the hypotheses of material effort , 2008 .

[67]  D. C. Drucker,et al.  Soil mechanics and plastic analysis or limit design , 1952 .

[68]  Hans Albert Richard,et al.  Technische Mechanik. Festigkeitslehre , 2011 .

[69]  Markus Reiner,et al.  Deformation, strain and flow: An elementary introduction to rheology , 1969 .

[70]  I. Schur,et al.  Vorlesungen über Invariantentheorie , 1968 .

[71]  W. Burzyński,et al.  Selected passages from Włodzimierz Burzyński's doctoral dissertation "study on material effort hypotheses" printed in polish by the Academy of Technical Sciences Lwów. 1928, 1-192 , 2009 .

[72]  D. W. Saunders,et al.  Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[73]  W. Prager,et al.  Plastizitätstheorie and ihre Anwendung auf Festigkeitsprobleme , 1967 .

[74]  John Henry Poynting,et al.  On pressure perpendicular to the shear planes in finite pure shears , and on the lengthening of loaded wires when twisted , 1909 .

[75]  William John Macquorn Rankine,et al.  A manual of applied mechanics , 2022 .

[76]  Mao-Hong Yu,et al.  Twin shear stress yield criterion , 1983 .

[77]  Mao-Hong Yu,et al.  Advances in strength theories for materials under complex stress state in the 20th Century , 2002 .

[78]  R. Hill LXVI. On the inhomogeneous deformation of a plastic lamina in a compression test , 1950 .

[79]  Jean-Louis Chaboche,et al.  Mechanics of Solid Materials , 1990 .

[80]  A. Das,et al.  Unified Plastic Yield Criterion for Ductile Solids , 1973 .

[81]  A. Freudenthal,et al.  Second order effects in the theory of plasticity , 1969 .

[82]  H. Hencky,et al.  Zur Theorie plastischer Deformationen und der hierdurch im Material hervorgerufenen Nachspannungen , 1924 .

[83]  Mao-Hong Yu,et al.  TWIN SHEAR STRESS THEORY AND ITS GENERALIZATION , 1985 .

[84]  M. Yu Reply to prof. Hill's comments , 1983 .

[85]  K. Roscoe,et al.  ON THE GENERALIZED STRESS-STRAIN BEHAVIOUR OF WET CLAY , 1968 .

[86]  H. M. Westergaard On the resistance of ductile materials to combined stresses in two or three directions perpendicular to one another , 1920 .

[87]  J. Bauwens,et al.  Yield condition and propagation of Lüders' lines in tension–torsion experiments on poly(vinyl chloride) , 1970 .

[88]  Wolfram Stadler,et al.  Fundamentals of Multicriteria Optimization , 1988 .

[89]  F. Ludwig,et al.  Drang und Zwang: Eine höhere Festigkeitslehre für Ingenieure , 2009 .

[90]  S. S. Sternstein,et al.  Yield criteria for plastic deformation on glassy high polymers in general stress fields , 1969 .

[91]  R. S. Khurmi.pdf,et al.  Strength of Materials , 1908, Nature.

[92]  H. Altenbach Strength hypotheses - a never ending story , 2010 .

[93]  Davide Bigoni,et al.  Yield criteria for quasibrittle and frictional materials , 2004, 1010.1823.

[94]  O. Nelles,et al.  An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.

[95]  J. Williams,et al.  Stress analysis of polymers , 1973 .

[96]  Edmé ca. Mariotte,et al.  Traité du mouvement des eaux et des autres corps fluides ... , 1970 .

[97]  D. C. Drucker,et al.  Fitting mathematical theories of plasticity to experimental results , 1950 .

[98]  Markus Reiner,et al.  Deformation, strain and flow , 1949 .

[99]  O. Hoffman,et al.  Introduction To The Theory Of Plasticity For Engineers , 2012 .

[100]  P. Neményi,et al.  Elastizität und Festigkeit , 1930 .

[101]  M. Sayir Zur Fließbedingung der Plastizitätstheorie , 1970 .

[102]  N. Tschoegl,et al.  Failure surfaces in principal stress space , 2007 .

[103]  G. Foussereau,et al.  Comptes rendus des séances de l'Académie des Sciences et annales de chimie et de physique; 1892 , 1893 .

[104]  Bruchspannung und Festigkeit von Hochpolymeren , 1956 .

[105]  Holm Altenbach SECTION 3.6 – A Generalized Limit Criterion with Application to Strength, Yielding, and Damage of Isotropic Materials , 2001 .

[106]  Howard L. Schreyer,et al.  SMOOTH LIMIT SURFACES FOR METALS, CONCRETE, AND GEOTECHNICAL MATERIALS , 1989 .

[107]  M. Nowak,et al.  An Extension of Burzyński Hypothesis of Material Effort Accounting for the Third Invariant of Stress Tensor , 2011 .

[108]  B. Wack The torsion of a tube (or a rod): General cylindrical kinematics and some axial deformation and ratchet measurements , 1989 .

[109]  M. Reiner,et al.  Second-order effects in elasticity, plasticity and fluid dynamics : International Symposium, Haifa, Israel, April 23-27, 1962 , 1964 .

[110]  Stephen P. Timoshenko Resistance des materiaux , 1968 .

[111]  A. Mendelson Plasticity: Theory and Application , 1968 .

[112]  Holm Altenbach A NONCLASSICAL MODEL FOR CREEP-DAMAGE PROCESSES , 2001 .

[113]  F. Schleicher,et al.  Der Spannungszustand an der Fließgrenze (Plastizitätsbedingung) , 1926 .

[114]  Luigi Gambarotta,et al.  Isotropic damage model with different tensile–compressive response for brittle materials , 2001 .

[115]  R. S. Raghava,et al.  The macroscopic yield behaviour of polymers , 1973 .

[116]  Wai-Fah Chen,et al.  Plasticity for Structural Engineers , 1988 .

[117]  John Henry Poynting,et al.  On the changes in the dimensions of a steel wire when twisted, and on the pressure of distortional waves in steel , 1912 .

[118]  W. Kaiser Malmeisters, A. / Tamužs, V. / Teters, G., Mechanik der Polymerwerkstoffe. Berlin. Akademie Verlag. 1977. 597 S., M 120,– , 1979 .

[119]  Huajian Gao,et al.  The Theory of Materials Failure , 2014 .

[120]  Holm Altenbach,et al.  Einige Überlegungen zur Unified Strength Theory von Mao-Hong Yu , 2010 .

[121]  M. Życzkowski,et al.  Combined Loadings in the Theory of Plasticity , 1981 .

[122]  W. Prager,et al.  Theorie ideal plastischer Körper , 1954 .

[123]  Richard Von Mises,et al.  Mechanik der plastischen Formänderung von Kristallen , 1928 .

[124]  O. C. Zienkiewicz,et al.  Some useful forms of isotropic yield surfaces for soil and rock mechanics , 1977 .

[125]  Zdeněk P. Bažant,et al.  Mechanics of solid materials , 1992 .

[126]  F. Cardarelli Materials Handbook — a concise desktop reference: Pub 2000, ISBN 1-85233-168-2. 595 pages, £80 , 2001 .