The ecology of genetically modified mosquitoes.

Ecological and population biology issues constitute serious challenges to the application of genetically modified mosquitos (GMM) for disease control.

[1]  A. James Control of Disease Transmission through Genetic Modification of Mosquitoes , 2000 .

[2]  J. Koella,et al.  Reduced efficacy of the immune melanization response in mosquitoes infected by malaria parasites , 2002, Parasitology.

[3]  M. Tanner,et al.  Incidence of Plasmodium falciparum infection in infants in relation to exposure to sporozoite-infected anophelines. , 1998, The American journal of tropical medicine and hygiene.

[4]  J. Craig Venter,et al.  Plasmodium, human and Anopheles genomics and malaria , 2002, Nature.

[5]  R. Snow,et al.  Averting a malaria disaster , 1999, The Lancet.

[6]  D. Focks,et al.  Transmission thresholds for dengue in terms of Aedes aegypti pupae per person with discussion of their utility in source reduction efforts. , 2000, The American journal of tropical medicine and hygiene.

[7]  A. Ghosh,et al.  Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite , 2002, Nature.

[8]  M. Enserink Ecologists See Flaws in Transgenic Mosquito , 2002, Science.

[9]  Christophe Boëte,et al.  A theoretical approach to predicting the success of genetic manipulation of malaria mosquitoes in malaria control , 2002, Malaria Journal.

[10]  G. Yan,et al.  Behavioural determinants of gene flow in malaria vector populations: Anopheles gambiae males select large females as mates , 2002, Malaria Journal.

[11]  F. Simard,et al.  Evolutionary studies of malaria vectors. , 2002, Trends in parasitology.

[12]  L. P. Lounibos,et al.  Field trials with a translocation homozygote in Aedes aegypti for population replacement. , 1976, Journal of economic entomology.

[13]  A. James,et al.  Microbe‐induced cytoplasmic incompatibility as a mechanism for introducing transgenes into arthropod populations , 1999, Insect molecular biology.

[14]  A. Spielman,et al.  Spatially explicit model of transposon-based genetic drive mechanisms for displacing fluctuating populations of anopheline vector mosquitoes. , 1998, Journal of medical entomology.

[15]  E. Domingo,et al.  Lack of evolutionary stasis during alternating replication of an arbovirus in insect and mammalian cells. , 1999, Journal of molecular biology.

[16]  L. Alphey,et al.  Dominant lethality and insect population control. , 2002, Molecular and biochemical parasitology.

[17]  A. James,et al.  Malaria Control with Genetically Manipulated Insect Vectors , 2002, Science.

[18]  Charles E. Taylor,et al.  Effective population size and persistence of Anopheles arabiensis during the dry season in West Africa , 1993, Medical and veterinary entomology.

[19]  M. G. Kidwell,et al.  Transposable elements as population drive mechanisms: specification of critical parameter values. , 1994, Journal of medical entomology.

[20]  C. Lengeler,et al.  Child mortality and malaria transmission intensity in Africa. , 2001, Trends in parasitology.

[21]  T. Scott,et al.  Longitudinal Studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: Blood Feeding Frequency , 2000, Journal of medical entomology.

[22]  G. Dolo,et al.  Mark–release–recapture experiments with Anopheles gambiae s.l. in Banambani Village, Mali, to determine population size and structure , 1998, Medical and veterinary entomology.

[23]  C. Rogier,et al.  Combating malaria in Africa. , 2002, Trends in parasitology.

[24]  J. Powell,et al.  Speciation Within Anopheles gambiae-- the Glass Is Half Full , 2002, Science.