Numerical conformal mapping of multiply connected regions onto the fifth category of Koebe’s canonical slit regions
暂无分享,去创建一个
[1] Lothar Reichel,et al. A fast method for solving certain integral equations of the first kind with application to conforma mapping , 1986 .
[2] Ali W. K. Sangawi,et al. Linear integral equations for conformal mapping of bounded multiply connected regions onto a disk with circular slits , 2011, Appl. Math. Comput..
[3] 辻 正次,et al. Potential theory in modern function theory , 1959 .
[4] Ali W. K. Sangawi,et al. Circular Slits Map of Bounded Multiply Connected Regions , 2012 .
[5] Mohamed M. S. Nasser,et al. The Riemann-Hilbert problem and the generalized Neumann kernel on multiply connected regions , 2008 .
[6] A. Mayo,et al. Rapid methods for the conformal mapping of multiply connected regions , 1986 .
[7] Tobin A. Driscoll,et al. Radial and circular slit maps of unbounded multiply connected circle domains , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[8] Kaname Amano,et al. Numerical conformal mappings of bounded multiply connected domains by the charge simulation method , 2003 .
[9] R. Menikoff,et al. Methods for numerical conformal mapping , 1980 .
[10] Mohamed M. S. Nasser,et al. A Boundary Integral Equation for Conformal Mapping of Bounded Multiply Connected Regions , 2009 .
[11] Ali W. K. Sangawi,et al. Annulus with circular slit map of bounded multiply connected regions via integral equation method , 2012 .
[12] L. Bourchtein. Conformal mappings of multiply connected domains onto canonical domains using the Green and Neumann functions , 2013 .
[13] Darren Crowdy,et al. Conformal Mappings between Canonical Multiply Connected Domains , 2006 .
[14] M. Sugihara,et al. Numerical Conformal Mappings of Unbounded Multiply-Connected Domains Using the Charge Simulation Method , 2003 .
[15] Mohamed M. S. Nasser. Numerical Conformal Mapping via a Boundary Integral Equation with the Generalized Neumann Kernel , 2009, SIAM J. Sci. Comput..
[16] S. Bergman. The kernel function and conformal mapping , 1950 .
[17] Kaname Amano,et al. A Charge Simulation Method for Numerical Conformal Mapping onto Circular and Radial Slit Domains , 1998, SIAM J. Sci. Comput..
[18] R. Courant. Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces , 1950 .
[19] K. Atkinson. The Numerical Solution of Integral Equations of the Second Kind , 1997 .
[20] Paul Koebe,et al. Abhandlungen zur Theorie der konformen Abbildung , 1916 .
[21] Mohamed M. S. Nasser,et al. Numerical conformal mapping of multiply connected regions onto the second, third and fourth categories of Koebeʼs canonical slit domains , 2011 .
[22] Ali W. K. Sangawi,et al. Radial Slit Maps of Bounded Multiply Connected Regions , 2013, J. Sci. Comput..
[23] Ali W. K. Sangawi,et al. Parallel slits map of bounded multiply connected regions , 2012 .
[24] M. Schiffer,et al. Connections and conformal mapping , 1962 .
[25] Chapter 4 – Canonical Conformal and Quasiconformal Mappings. Identities. Kernel Functions , 2005 .
[26] Rudolf Wegmann,et al. Chapter 9 – Methods for Numerical Conformal Mapping , 2005 .
[27] Thomas K. DeLillo,et al. Calculation of Resistances for Multiply Connected Domains Using Schwarz-Christoffel Transformations , 2012 .
[28] G. Goluzin. Geometric theory of functions of a complex variable , 1969 .