Numerical conformal mapping of multiply connected regions onto the fifth category of Koebe’s canonical slit regions

Abstract This paper presents a boundary integral method for approximating the conformal mapping from bounded multiply connected regions onto the fifth category of Koebe’s classical canonical slit regions. The method is based on a uniquely solvable boundary integral equation with generalized Neumann kernel. The results of some test calculations illustrate the performance of the presented method.

[1]  Lothar Reichel,et al.  A fast method for solving certain integral equations of the first kind with application to conforma mapping , 1986 .

[2]  Ali W. K. Sangawi,et al.  Linear integral equations for conformal mapping of bounded multiply connected regions onto a disk with circular slits , 2011, Appl. Math. Comput..

[3]  辻 正次,et al.  Potential theory in modern function theory , 1959 .

[4]  Ali W. K. Sangawi,et al.  Circular Slits Map of Bounded Multiply Connected Regions , 2012 .

[5]  Mohamed M. S. Nasser,et al.  The Riemann-Hilbert problem and the generalized Neumann kernel on multiply connected regions , 2008 .

[6]  A. Mayo,et al.  Rapid methods for the conformal mapping of multiply connected regions , 1986 .

[7]  Tobin A. Driscoll,et al.  Radial and circular slit maps of unbounded multiply connected circle domains , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  Kaname Amano,et al.  Numerical conformal mappings of bounded multiply connected domains by the charge simulation method , 2003 .

[9]  R. Menikoff,et al.  Methods for numerical conformal mapping , 1980 .

[10]  Mohamed M. S. Nasser,et al.  A Boundary Integral Equation for Conformal Mapping of Bounded Multiply Connected Regions , 2009 .

[11]  Ali W. K. Sangawi,et al.  Annulus with circular slit map of bounded multiply connected regions via integral equation method , 2012 .

[12]  L. Bourchtein Conformal mappings of multiply connected domains onto canonical domains using the Green and Neumann functions , 2013 .

[13]  Darren Crowdy,et al.  Conformal Mappings between Canonical Multiply Connected Domains , 2006 .

[14]  M. Sugihara,et al.  Numerical Conformal Mappings of Unbounded Multiply-Connected Domains Using the Charge Simulation Method , 2003 .

[15]  Mohamed M. S. Nasser Numerical Conformal Mapping via a Boundary Integral Equation with the Generalized Neumann Kernel , 2009, SIAM J. Sci. Comput..

[16]  S. Bergman The kernel function and conformal mapping , 1950 .

[17]  Kaname Amano,et al.  A Charge Simulation Method for Numerical Conformal Mapping onto Circular and Radial Slit Domains , 1998, SIAM J. Sci. Comput..

[18]  R. Courant Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces , 1950 .

[19]  K. Atkinson The Numerical Solution of Integral Equations of the Second Kind , 1997 .

[20]  Paul Koebe,et al.  Abhandlungen zur Theorie der konformen Abbildung , 1916 .

[21]  Mohamed M. S. Nasser,et al.  Numerical conformal mapping of multiply connected regions onto the second, third and fourth categories of Koebeʼs canonical slit domains , 2011 .

[22]  Ali W. K. Sangawi,et al.  Radial Slit Maps of Bounded Multiply Connected Regions , 2013, J. Sci. Comput..

[23]  Ali W. K. Sangawi,et al.  Parallel slits map of bounded multiply connected regions , 2012 .

[24]  M. Schiffer,et al.  Connections and conformal mapping , 1962 .

[25]  Chapter 4 – Canonical Conformal and Quasiconformal Mappings. Identities. Kernel Functions , 2005 .

[26]  Rudolf Wegmann,et al.  Chapter 9 – Methods for Numerical Conformal Mapping , 2005 .

[27]  Thomas K. DeLillo,et al.  Calculation of Resistances for Multiply Connected Domains Using Schwarz-Christoffel Transformations , 2012 .

[28]  G. Goluzin Geometric theory of functions of a complex variable , 1969 .