Forty eclipsing binaries in the Small Magellanic Cloud: fundamental parameters and Cloud distance

We have conducted a programme to determine the fundamental parameters of a substantial number of eclipsing binaries of spectral types O and B in the Small Magellanic Cloud (SMC). New spectroscopic data, obtained with the two- degree- field (2dF) multi- object spectrograph on the 3.9- m Anglo- Australian Telescope, have been used in conjunction with photometry from the Optical Gravitational Lens Experiment (OGLE- II) data base of SMC eclipsing binaries. Previously we reported results for 10 systems; in this second and concluding paper we present spectral types, masses, radii, temperatures, surface gravities and luminosities for the components of a further 40 binaries. The uncertainties are typically +/- 10 per cent on masses, +/- 4 per cent on radii and +/- 0.07 on log L. The full sample of 50 OB- type eclipsing systems is the largest single set of fundamental parameters determined for high- mass binaries in any galaxy. We find that 21 of the systems studied are in detached configurations, 28 are in semidetached post- mass- transfer states, and one is a contact binary.The overall properties of the detached systems are consistent with theoretical models for the evolution of single stars with SMC metal abundances (Z similar or equal to 0.004); in particular, observed and evolutionary masses are in excellent agreement. Although there are no directly applicable published models, the overall properties of the semidetached systems are consistent with them being in the slow phase of mass transfer in case A. About 40 per cent of these semidetached systems show photometric evidence of orbital- phase- dependent absorption by a gas stream falling from the inner Lagrangian point on the secondary star towards the primary star. This sample demonstrates that case- A mass transfer is a common occurrence amongst high- mass binaries with initial orbital periods P less than or similar to 5 d, and that this slow phase has a comparable duration to the detached phase preceding it.Each system provides a primary distance indicator. We find a mean distance modulus to the SMC of 18.91 +/- 0.03 +/- 0.1 (internal and external uncertainties; D = 60.6 +/- 1.0 +/- 2.8 kpc). This value represents one of the most precise available determinations of the distance to the SMC.

[1]  M. Irwin,et al.  A 2dF survey of the Small Magellanic Cloud , 2004, astro-ph/0406409.

[2]  R. Hilditch,et al.  Spectroscopically and spatially resolving the components of close binary stars : proceedings of a meeting held in Dubrovnik, Croatia 20-24 October 2003 , 2004 .

[3]  Paolo Gasbarri,et al.  Dynamics of multibody systems in space environment; Lagrangian vs. Eulerian approach , 2004 .

[4]  E. Guinan Seeing double in the local group: extragalactic binaries , 2004 .

[5]  D. Graczyk Light-curve solutions for bright detached eclipsing binaries in the Small Magellanic Cloud: absolute dimensions and distance indicators , 2003 .

[6]  Poland,et al.  Light curve solutions for bright detached eclipsing binaries in SMC: absolute dimensions and distance indicators , 2003, astro-ph/0303550.

[7]  J. Storm,et al.  Eclipsing binaries in the Magellanic Clouds. uvby CCD light curves and photometric analyses for HV 982 (LMC), HV 12578 (LMC), HV 1433 (SMC), and HV 11284 (SMC) , 2003, astro-ph/0302595.

[8]  R. Hilditch,et al.  Ten eclipsing binaries in the Small Magellanic Cloud: fundamental parameters and SMC distance , 2002, astro-ph/0210295.

[9]  I. Parry,et al.  The Anglo-Australian Observatory 2dF facility , 2002, astro-ph/0202175.

[10]  Toulouse,et al.  On the effective temperature scale of O stars , 2001, astro-ph/0111233.

[11]  E. Grebel,et al.  The Magellanic Clouds Photomtric Survey: The Small Magellanic Cloud Stellar Catalog and Extinction Map , 2001, astro-ph/0110665.

[12]  E. Guinan,et al.  Fundamental Properties and Distances of the Large Magellanic Cloud from Eclipsing Binaries. II. HV 982 , 2002 .

[13]  Fundamental parameters for the eclipsing binary AzV 73 in the small Magellanic Cloud , 2001 .

[14]  R. E. Wilson,et al.  Photometric Solutions for Semidetached Eclipsing Binaries: Selection of Distance Indicators in the Small Magellanic Cloud , 2001, astro-ph/0201255.

[15]  S. Rembold,et al.  Intrinsic Colors of Stars in the Near-Infrared , 2001 .

[16]  A. Walker,et al.  Old Stellar Populations of the Small Magellanic Cloud , 2001, astro-ph/0107164.

[17]  R. E. Wilson,et al.  Photometric Solutions for Detached Eclipsing Binaries: Selection of Ideal Distance Indicators in the Small Magellanic Cloud , 2001, astro-ph/0105469.

[18]  D. Geisler,et al.  The Line-of-Sight Depth of Populous Clusters in the Small Magellanic Cloud , 2001, astro-ph/0104227.

[19]  J. Clariá,et al.  Background galaxies as reddening probes throughout the Magellanic Clouds , 2001, astro-ph/0103518.

[20]  R. Hilditch An Introduction to Close Binary Stars , 2001 .

[21]  M. Marconi,et al.  On the second-overtone stability among Small Magellanic Cloud Cepheids , 2001, astro-ph/0103107.

[22]  N. Langer,et al.  Formation of contact in massive close binaries , 2001, astro-ph/0102244.

[23]  M. Groenewegen,et al.  The LMC eclipsing binary HV 2274 revisited , 2000, astro-ph/0011299.

[24]  L. Girardi,et al.  Population effects on the red giant clump absolute magnitude, and distance determinations to nearby galaxies , 2000, astro-ph/0007343.

[25]  R. Hilditch An Introduction to Close Binary Stars: MASSES AND ABSOLUTE DIMENSIONS FOR STARS IN BINARIES , 2001 .

[26]  P. Popowski Clump Giant Distance to the Magellanic Clouds and Anomalous Colors in the Galactic Bulge , 1999, The Astrophysical journal.

[27]  L. Girardi,et al.  Evolutionary tracks and isochrones for low- and intermediate-mass stars: From 0.15 to 7 , and from to 0.03 , 1999, astro-ph/9910164.

[28]  K. Cook,et al.  The Distance to the Large Magellanic Cloud via the Eclipsing Binary HV 2274 , 1999, astro-ph/9910172.

[29]  P. A. Maurone,et al.  The Large Magellanic Cloud Eclipsing Binary HV 2274: Fundamental Properties and Comparison with Evolutionary Models , 1999, astro-ph/9909046.

[30]  B. Anthony-Twarog,et al.  Zeroing the Stellar Isochrone Scale: The Red Giant Clump Luminosity at Intermediate Metallicity , 1999, astro-ph/9901251.

[31]  I. Howarth,et al.  MICROTURBULENCE IN O SUPERGIANTS , 1998 .

[32]  P. A. Maurone,et al.  The Distance to the Large Magellanic Cloud from the Eclipsing Binary HV 2274 , 1998, astro-ph/9809132.

[33]  A. Cole Age, Metallicity, and the Distance to the Magellanic Clouds From Red Clump Stars , 1998, astro-ph/9804110.

[34]  G. Hill,et al.  Interacting OB star binaries: LZ Cep, SZ Cam and IU Aur , 1998 .

[35]  P. Wozniak,et al.  Optical Gravitational Lensing Experiment. Distance to the Magellanic Clouds with the Red Clump Stars: Are the Magellanic Clouds 15% Closer than Generally Accepted? , 1998, astro-ph/9803035.

[36]  K. Gordon,et al.  Starburst-like Dust Extinction in the Small Magellanic Cloud , 1998, astro-ph/9802003.

[37]  B. Madore,et al.  Hipparcos Parallaxes and the Cepheid Distance Scale , 1997, astro-ph/9707091.

[38]  H. Ford,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[39]  R. Hilditch,et al.  INTERACTING O-STAR BINARIES : V382 CYG, V448 CYG AND XZ CEP , 1997 .

[40]  E. Böhm-Vitense The First Steps of the Extragalactic Distance Ladder , 1997 .

[41]  T. Bedding Fundamental stellar properties: the interaction between observation and theory. Poster proceedings. , 1997 .

[42]  William D. Vacca,et al.  The Lyman-Continuum Fluxes and Stellar Parameters of O and Early B-Type Stars , 1996 .

[43]  L. Gardiner,et al.  N-body Simulations of the Small Magellanic Cloud and the Magellanic Stream , 1995, astro-ph/9503095.

[44]  P. Massey,et al.  Massive stars in the field and associations of the magellanic clouds: The upper mass limit, the initial mass function, and a critical test of main-sequence stellar evolutionary theory , 1995 .

[45]  V. Niemela,et al.  Studies of Binary Stars in the Magellanic Clouds. II. Spectroscopic Orbits of Four Massive Eclipsing Binaries , 1994 .

[46]  W. Wegner Intrinsic colour indices of OB supergiants, giants and dwarfs in the UBVRIJHKLM System , 1994 .

[47]  B. Madore,et al.  The initial mass function for massive stars in the Magellanic Clouds. 2: Interstellar reddening toward 14 OB associations , 1994 .

[48]  M. Hawkins,et al.  Kinematics in the outer parts of the SMC , 1993 .

[49]  W. Gieren,et al.  A distance to the Cepheid HV 829 in the Small Magellanic Cloud , 1993 .

[50]  G. Hill,et al.  LIGHT2: a light-curve modeling program. , 1993 .

[51]  N. Walborn,et al.  CONTEMPORARY OPTICAL SPECTRAL CLASSIFICATION OF THE OB STARS: A DIGITAL ATLAS , 1990 .

[52]  M. Hawkins,et al.  Stellar populations and large-scale structure of the SMC - III. The geometry of the northern and north-western outlying regions. , 1989 .

[53]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[54]  I. Howarth,et al.  A grid of low metallicity line-blanketed LTE model stellar atmospheres , 1989 .

[55]  I. Howarth,et al.  The Stellar Winds of 203 Galactic O Stars: A Quantitative Ultraviolet Survey , 1989 .

[56]  D. Mathewson,et al.  The Structure of the Small Magellanic Cloud. II. , 1988 .

[57]  B. Madore,et al.  Distance Moduli and Structure of the Magellanic Clouds from Near-Infrared Photometry of Classical Cepheids , 1987 .

[58]  R. Hilditch,et al.  Simultaneous differential photometry with the St Andrews twin photometric telescope – II. The eclipsing binaries SX Aurigae and TT Aurigae , 1987 .

[59]  J. Mathis Interstellar dust and extinction , 1987 .

[60]  C. D. Laney,et al.  Infrared photometry of Magellanic Cloud Cepheids. Intrinsic properties of Cepheids and the spatial structure of the Clouds , 1986 .

[61]  I. Reid,et al.  The luminosity and kinematics of RR Lyraes – II. RR Lyraes and the distance to the LMC , 1986 .

[62]  J. Caldwell,et al.  The geometry and distance of the Magellanic Clouds from Cepheid variables , 1986 .

[63]  R. Hilditch,et al.  The massive near-contact binary system V348 Carinae (HD 90707) in IC 2581. , 1985 .

[64]  N. Visvanathan Distances to Magellanic Clouds from observations of Cepheids at 1.05 microns. , 1985 .

[65]  S. Mochnacki Accurate integrations of the Roche model , 1984 .

[66]  M. Feast,et al.  Infrared photometry of normal and peculiar A-type supergiants and the law of reddening in the Small Magellanic Cloud , 1984 .

[67]  I. Howarth LMC and galactic extinction , 1983 .

[68]  I. Howarth,et al.  A study of the low-mass X-ray binary HZ HER/HER X-1 using IUE and optical data. , 1983 .

[69]  I. Howarth A study of SK 160/SMC X-1. , 1982 .

[70]  E. Bohm-Vitense The Effective Temperature Scale , 1981 .

[71]  D. H. Mcnamara,et al.  THE GALACTIC FOREGROUND REDDENING IN THE DIRECTION OF THE MAGELLANIC CLOUDS. , 1980 .

[72]  A. Underhill,et al.  Effective temperatures, angular diameters, distances and linear radii for 160 O and B stars , 1979 .

[73]  P. Conti Spectroscopic studies of O-type stars. III. The effective temperature scale. , 1973 .

[74]  J. Hutchings,et al.  The Synthesis of Close-Binary Light Curves. III. The Hot Ellipsoidal Variables Psi Orionis and AO Cassiopelae and Evolutionary State of Six Systems , 1971 .

[75]  E. J. Öpik,et al.  Close Binary Systems , 1959 .

[76]  R. E. Wilson,et al.  Photometric Solutions for Semi-Detached Eclipsing Binaries : Selection of Distance Indicators in the Small Magellanic Cloud , 2022 .